精英家教网 > 初中数学 > 题目详情

【题目】解方程组:

(1)

(2)

(3)

【答案】(1);(2);(3).

【解析】

1)根据解方程的方法可以解答此方程;

(2)根据加减消元法可以解答此方程;

(3)根据解三元一次方程组的方法可以解答此方程.

解:(1) +1=

去分母,得

3(4x﹣1)+12=4(2x+3)

去括号,得

12x﹣3+12=8x+12

移项及合并同类项,得

4x=3

系数化为1,得

x=

(2)

①×3+②,得

16x=48

解得,x=3,

x=3代入①,得

y=2

故原方程组的解是

(3)

①+②,得

2x+4y=﹣2

②×3+③,得

3x+11y=﹣8

④×3﹣⑤×2,得

﹣10y=10

解得,y=﹣1,

y=﹣1代入④,得

x=1,

x=1,y=﹣1代入①,得

z=﹣2

故原方程组的解是

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,广场中心菱形花坛ABCD的周长是32米,∠A=60°,则A、C两点之间的距离为(

A. 4 B. C. 8 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学计划从一文体公司购买甲,乙两种型号的小黑板,经洽谈,购买一块甲型小黑板比购买一块乙型小黑板多用20元,且购买2块甲型小黑板和3块乙型小黑板共需440元.
(1)求购买一块甲型小黑板、一块乙型小黑板各需多少元?
(2)根据该中学实际情况,需从文体公司购买甲,乙两种型号的小黑板共60块,要求购买甲,乙两种型号小黑板的总费用不超过5240元.并且购买甲型小黑板的数量不小于购买乙型小黑板数量的 .则该中学从文体公司购买甲,乙两种型号的小黑板有哪几种方案?哪种方案的总费用最低?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】星期天的早晨,小明骑自行车从家出发,到离家1050米的书店买书,出发1分钟后,他到达离家150米的地方,又过1分钟后,小明加快了速度.如图所示是小明从家出发后离家的路程y(米)与他骑自行车的时间x(分钟)之间的函数图象.根据图象解答下列问题:
(1)直接写出点A的坐标,并求线段AB所在的直线的函数解析式.
(2)求小明出发多长时间后,离书店还剩210米的路程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,垂直于地面的灯柱AB被一钢缆CD固定,CD与地面成45°夹角(∠CDB=45°);为了使灯柱更牢固,在C点上方2米处再新加固另一条钢线ED,ED与地面成53°夹角(∠EDB=53°),求线段ED的长.(结果精确到0.1米,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.
(1)求证:AC⊥BD;
(2)若AB=14,cos∠CAB= ,求线段OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某中学有一块四边形的空地ABCD,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.

(1)求出空地ABCD的面积.

(2)若每种植1平方米草皮需要200元,问总共需投入多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】填空,完成下列说理过程

如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.求∠DOE的度数.

解:因为OD是∠AOC的平分线,   

所以∠COD=AOC.   

因为OE是∠BOC 的平分线,

所以   =BOC.

所以∠DOE=COD+COE=AOC+BOC)=AOB=   °.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,∠B、C的平分线交于P,且分别与AD交于EF

(1)求证:△BPC为直角三角形;

(2)若BC=16,CD=3,PE=8,求PEF的面积.

查看答案和解析>>

同步练习册答案