精英家教网 > 初中数学 > 题目详情

【题目】一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以每小时40海里的速度前往救援,则海警船到达事故船C处所需的时间大约为(单位:小时)(  )

A. B. C. sin37°D. cos37°

【答案】B

【解析】

过点CCDABAB延长线于D.先解Rt△ACD得出CDAC=40海里,再解Rt△CBD中,得出BC海里,然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.

如图,过点CCDABAB延长线于D

在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80,∴CDAC=40.

在Rt△CBD中,∵∠CDB=90°,∠BCD=37°,∴BC,∴海警船到大事故船C处所需的时间大约为:40(小时).

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,⊙C的半径为r,给出如下定义:若点P的横、纵坐标均为整数,且到圆心C的距离dr,则称P为⊙C 的关联整点.

1)当⊙O的半径r=2时,在点D2-2),E-10),F02)中,为⊙O的关联整点的是

2)若直线上存在⊙O的关联整点,且不超过7个,求r的取值范围;

3)⊙C的圆心在x轴上,半径为2,若直线上存在⊙C的关联整点,求圆心C的横坐标t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为4,点EF分别在边ABAD上,且∠ECF=45°,CF的延长线交BA的延长线于点GCE的延长线交DA的延长线于点H,连接ACEF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)线段ACAGAH什么关系?请说明理由;

(3)设AEm

①△AGH的面积S有变化吗?如果变化.请求出Sm的函数关系式;如果不变化,请求出定值.

②请直接写出使△CGH是等腰三角形的m值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】20198月.山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备的状态.太职学院足球场作为一个重要比赛场馆.占地面积约24300平方米.总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色.2018315日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了.结来比原计划提前4天完成安装任务.求原计划每天安装多少个座位.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,并完成相应任务.

古希腊数学家,天文学家欧多克索斯(Eudoxus,约前400—347)曾提出:能否将一

条线段分成不相等的两部分.使较短线段与较长线段的比等于较长线段与原线段的比,这个相等的比就是,黄金分割在我们生活中有广泛运用.黄金分割点也可以用折纸的方式得到.

第一步:裁一张正方形的纸片,先折出的中点,然后展平,再折出线段,再展平;

第二步:将纸片沿折叠,使落到线段上,的对应点为,展平;

第三步:沿折叠,使落在上,的对应点为,展平,这时就是的黄金分割点.

古希腊数学家,天文学家欧多克索斯(Eudoxus,约前400—347)曾提出:能否将一

条线段分成不相等的两部分.使较短线段与较长线段的比等于较长线段与原线段的比,这个相等的比就是,黄金分割在我们生活中有广泛运用.黄金分割点也可以用折纸的方式得到.

第一步:裁一张正方形的纸片,先折出的中点,然后展平,再折出线段,再展平;

第二步:将纸片沿折叠,使落到线段上,的对应点为,展平;

第三步:沿折叠,使落在上,的对应点为,展平,这时就是的黄金分割点.

任务:(1)试根据以上操作步骤证明就是的黄金分割点;

2)请写出一个生活中应用黄金分割的实际例子.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】乌鞘岭隧道群是连霍国道主干线上隧道最密集、路线最长、海拔最高、地质条件最复杂、施工难度最大的咽喉工程.乌鞘岭特长公路隧道群的全部贯通,将使连霍国道主干线在甘肃境内1608公里路段全部实现高速化,同时也使甘肃河西五市与省会兰州及东南沿海省、市实现全线高速连接.如图,在建设中为确定某隧道AB的长度,测量人员在离地面2700米高度C处的飞机上,测得正前方AB两点处的俯角分别是60°和30°,求隧道AB的长(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB是⊙O的直径,弦CDABH,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AGCDK

1)如图1,求证:KE=GE

2)如图2,连接CABG,若∠FGB=ACH,求证:CAFE

3)如图3,在(2)的条件下,连接CGAB于点N,若sinE=AK=,求CN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=x2+bx+c经过点B,与直线l的另一个交点为C(4,n).

(1)求n的值和抛物线的解析式;

(2)点D在抛物线上,DEy轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0t4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;

(3)将AOB绕平面内某点M旋转90°或180°,得到A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知RtABC中,∠ACB=90°,以AC为直径的圆O交斜边ABD.过DDEACE,将ADE沿直线AB翻折得到ADF

1)求证:DF是⊙O的切线;

2)若⊙O的半径为10sinFAD=,延长FDBCG,求BG的长.

查看答案和解析>>

同步练习册答案