精英家教网 > 初中数学 > 题目详情

【题目】阅读下列材料,并完成相应任务.

古希腊数学家,天文学家欧多克索斯(Eudoxus,约前400—347)曾提出:能否将一

条线段分成不相等的两部分.使较短线段与较长线段的比等于较长线段与原线段的比,这个相等的比就是,黄金分割在我们生活中有广泛运用.黄金分割点也可以用折纸的方式得到.

第一步:裁一张正方形的纸片,先折出的中点,然后展平,再折出线段,再展平;

第二步:将纸片沿折叠,使落到线段上,的对应点为,展平;

第三步:沿折叠,使落在上,的对应点为,展平,这时就是的黄金分割点.

古希腊数学家,天文学家欧多克索斯(Eudoxus,约前400—347)曾提出:能否将一

条线段分成不相等的两部分.使较短线段与较长线段的比等于较长线段与原线段的比,这个相等的比就是,黄金分割在我们生活中有广泛运用.黄金分割点也可以用折纸的方式得到.

第一步:裁一张正方形的纸片,先折出的中点,然后展平,再折出线段,再展平;

第二步:将纸片沿折叠,使落到线段上,的对应点为,展平;

第三步:沿折叠,使落在上,的对应点为,展平,这时就是的黄金分割点.

任务:(1)试根据以上操作步骤证明就是的黄金分割点;

2)请写出一个生活中应用黄金分割的实际例子.

【答案】1)证明见解析;(2)答案不唯一.如:节目主持人报幕,总是站在舞台上侧近于0.618的位置才是最佳的位置;时装模特、舞蹈演员腿长和身高的比例也近似于0.618比值.

【解析】

1)根据操作步骤先设正方形的边长为,然后利用勾股定理结合折叠的特点求解(2)生活中的例子很多,选择其中一个例子即可.

解:(1)证明:设正方形的边长为

的中点,

又∵由折叠可得

又∵

∴点是线段的黄金分割点.

2)答案不唯一.如:节目主持人报幕,总是站在舞台上侧近于0.618的位置才是最佳的位置;时装模特、舞蹈演员腿长和身高的比例也近似于0.618比值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知一次函数的图象与反比例函数 (k ≠ 0) 在第一象限内的图象交于点A1m.

(1) 求反比例函数的表达式;

(2) B在反比例函数的图象上, 且点B的横坐标为2. 若在x轴上存在一点M,使MA+MB的值最小,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角和坝底宽AD.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线 经过 两点,与 轴相交于点 ,连接 .点 为抛物线上一动点,过点 轴的垂线 ,交直线 于点 ,交 轴于点

求抛物线的表达式;

位于 轴右边的抛物线上运动时,过点 直线 为垂足.当点 运动到何处时,以 为顶点的三角形与 相似?并求出此时点 的坐标;

如图2,当点 在位于直线 上方的抛物线上运动时,连接 .请问 的面积 能否取得最大值?若能,请求出最大面积 ,并求出此时点 的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,并完成相应任务.

古希腊数学家,天文学家欧多克索斯(Eudoxus,约前400—347)曾提出:能否将一

条线段分成不相等的两部分.使较短线段与较长线段的比等于较长线段与原线段的比,这个相等的比就是,黄金分割在我们生活中有广泛运用.黄金分割点也可以用折纸的方式得到.

第一步:裁一张正方形的纸片,先折出的中点,然后展平,再折出线段,再展平;

第二步:将纸片沿折叠,使落到线段上,的对应点为,展平;

第三步:沿折叠,使落在上,的对应点为,展平,这时就是的黄金分割点.

古希腊数学家,天文学家欧多克索斯(Eudoxus,约前400—347)曾提出:能否将一

条线段分成不相等的两部分.使较短线段与较长线段的比等于较长线段与原线段的比,这个相等的比就是,黄金分割在我们生活中有广泛运用.黄金分割点也可以用折纸的方式得到.

第一步:裁一张正方形的纸片,先折出的中点,然后展平,再折出线段,再展平;

第二步:将纸片沿折叠,使落到线段上,的对应点为,展平;

第三步:沿折叠,使落在上,的对应点为,展平,这时就是的黄金分割点.

任务:(1)试根据以上操作步骤证明就是的黄金分割点;

2)请写出一个生活中应用黄金分割的实际例子.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以每小时40海里的速度前往救援,则海警船到达事故船C处所需的时间大约为(单位:小时)(  )

A. B. C. sin37°D. cos37°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】港珠澳大桥,从2009年开工建造,于20181024日正式通车.其全长55公里,连接港珠澳三地,集桥、岛、隧于一体,是世界上最长的跨海大桥.如图是港珠澳大桥的海豚塔部分效果图,为了测得海豚塔斜拉索顶端A距离海平面的高度,先测出斜拉索底端C到桥塔的距离(CD的长)约为100米,又在C点测得A点的仰角为30°,测得B点的俯角为20°,求斜拉索顶端A点到海平面B点的距离(AB的长).(已知1.73tan20°≈0.36,结果精确到0.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知矩形和点,当点上任一位置(如图所示)时,易证得结论:,请你探究:当点分别在图、图中的位置时,又有怎样的数量关系请你写出对上述两种情况的探究结论,并利用图证明你的结论.

答:对图的探究结论为________

对图的探究结论为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形OABC,以点O为坐标原点建立平面直角坐标系,其中A20),C03),点P以每秒1个单位的速度从点C出发在射线CO上运动,连接BP,作BEPBx轴于点E,连接PEAB于点F,设运动时间为t秒.在运动的过程中,写出以POE为顶点的三角形与ABE相似时t的值为_____________

查看答案和解析>>

同步练习册答案