精英家教网 > 初中数学 > 题目详情
19.关于x的方程x-$\frac{x-m}{2}$=$\frac{2-m}{2}$的解是非负数,求代数式|m-3|的最小值.

分析 按照一般步骤解方程,用含有m的代数式表示x,然后根据x的取值,求m的范围,即可解答.

解答 解:原方程整理得:x+m=2-m,
∴x=2-2m,
∵x≥0,
∴2-2m≥0,
解得:m≤1.
∴当m=1时,代数式|m-3|的最小值为2.

点评 本题考查了一元一次方程的解,解题的关键是把字母m看作一个常数来解,本题是常见的题型要求掌握.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

9.如图,?ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24厘米,△OAB的周长是18厘米,则EF=3厘米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在?ABCD中,AE,BF,CM,DN分别是∠DAB,∠ABC,∠BCD,∠CDA的角平分线.求证:四边形GHKL是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,直线y=2分别交正比例函数y=-2x,y=-$\frac{1}{2}$x的图象于A,B两点,求S△AOB

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.若一个正五边形绕着它的中心旋转后与原图形重合,它至少旋转角的大小是72°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.
(1)求证:CE∥AD;
(2)若AD=4,AB=6,求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在平面直角坐标系中,两个函数y=x,y=-$\frac{1}{2}$x+6的图象交于点A,动点P从点O开始沿OA方向以每秒$\sqrt{2}$个单位的速度运动,作PQ∥x轴交直线BC于点Q,以PQ为一边向下作正方形PQMN,设正方形边长为m.|
(1)求点A的坐标;
(2)点P在线段OA上运动时,求m与运动时间t(秒)的关系式;
(3)在(2)的条件下,当正方形PQMN在△AOB的内部时,求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.根据图象,你能说出哪些一元一次方程的解?请直接写出相应方程的解.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,已知反比例函数y=$\frac{k}{x}$的图象经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB 的面积为2.若直线y=ax+b经过点A,并且经过反比例函数y=$\frac{k}{x}$的图象上另一点C(n,一2).
(1)求反比例函数y=$\frac{k}{x}$与直线y=ax+b的解析式;
(2)根据所给条件,直接写出不等式ax+b≥$\frac{k}{x}$的解集x≤-1或0<x≤2; 
(3)求出线段OA的长,并思考:在x轴上是否存在一点P,使得△PAO是等腰三角形?如果存在,请直接写出P的坐标;如果不存在,请说明理由.
(4)如果D为反比例函数在第二象限图象上的点(点D与点A不重合),且D点的横坐标为-2,在x轴上求一点P,使PA+PD最小.

查看答案和解析>>

同步练习册答案