【题目】如图,抛物线y=ax2﹣11ax+24a交x轴于C,D两点,交y轴于点B(0,),过抛物线的顶点A作x轴的垂线AE,垂足为点E,作直线BE.
(1)求直线BE的解析式;
(2)点H为第一象限内直线AE上的一点,连接CH,取CH的中点K,作射线DK交抛物线于点P,设线段EH的长为m,点P的横坐标为n,求n与m之间的函数关系式.(不要求写出自变量m的取值范围);
(3)在(2)的条件下,在线段BE上有一点Q,连接QH,QC,线段QH交线段PD于点F,若∠HFD=2∠FDO,∠HQC=90°∠FDO,求n的值.
【答案】(1)yx;(2)nm+3;(3)或
【解析】
(1)根据抛物线可得对称轴,可知点E的坐标,利用待定系数法可得一次函数BE的解析式;
(2)如图1,作辅助线,构建直角三角形,根据抛物线过点B(0,),可得a的值,计算y=0时,x的值可得C和D两点的坐标,从而知CD的值,根据P的横坐标可表示其纵坐标,根据tan∠PDM,
tan∠KDN,相等列方程为,可得结论;
(3)如图2,延长HF交x轴于T,先根据已知得∠FDO=∠FTO,由等角的三角函数相等和(2)中的结论得:tan∠FDO=tan∠FTO,则,可得ET和CT的长,令∠FDO=∠FTO=2α,表示角可得∠TCQ=∠TQC,则TQ=CT=5,
设Q的坐标为(t,t),根据定理列方程可得:TS2+QS2=TQ2,(2+t)2+()2=52,解得t1,t2=1;根据两个t的值分别求n的值即可.
解:(1)∵抛物线y=ax2﹣11ax+24a,
∴对称轴是:x,
∴E(,0),
∵B(0,),
设直线BE的解析式为:y=kx+b,
则,解得:,
∴直线BE的解析式为:yx;
(2)如图1,过K作KN⊥x轴于N,过P作PM⊥x轴于M,
∵抛物线y=ax2﹣11ax+24a交y轴于点B(0,),
∴24a,
∴a,
∴yx2x(x﹣3)(x﹣8),
∴当y=0时,(x﹣3)(x﹣8)=0,
解得:x=3或8,
∴C(3,0),D(8,0),
∴OC=3,OD=8,
∴CD=5,CE=DE,
∴P点在抛物线上,
∴P[n,(n﹣3)(n﹣8)],
∴PM(n﹣3)(n﹣8),DM=8﹣n,
∴tan∠PDM,
∵AE⊥x轴,
∴∠KNC=∠HEC=90°,
∴KN∥EH,
∴1,
∴CN=ENCE,
∴KNm,ND,
在△KDN中,tan∠KDN中,tan∠KDN,
∴,
nm+3;
(3)如图2,延长HF交x轴于T,
∵∠HFD=2∠FDO,∠HFD=∠FDO+∠FTO,
∴∠FDO=∠FTO,
∴tan∠FDO=tan∠FTO,
在Rt△HTE中,tan∠FTO,
∴,
∴ET,
∴CT=5,
令∠FDO=∠FTO=2α,
∴∠HQC=90°,
∴∠TQC=180°﹣∠HQC=90°﹣α,∠TCQ=180°﹣∠HTC﹣∠TQC=90°﹣α,
∴∠TCQ=∠TQC,
∴TQ=CT=5,
∵点Q在直线yx上,
∴可设Q的坐标为(t,t),
过Q作QS⊥x轴于S,则QSt,TS=2+t,
在Rt△TQS中,TS2+QS2=TQ2,
∴(2+t)2+()2=52,
解得t1,t2=1;
①当t时,QS,TS,
在Rt△QTH中,tan∠QTS,
∴,m,
∴n3,
②当t=1时,QS=4,TS=3,
在Rt△QTH中,tan∠QTS,
∴,
m=10,
∴n3.
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx-3的图象与x轴相交于A(-1,0),B(3,0)两点.与y轴相交于点C
(1)求这个二次函数的解析式.
(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,请问:当点P的坐标为多少时,线段PM的长最大?并求出这个最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有大小两种货车,辆大货车与辆小火车一次可以运货吨,辆大货车与辆小货车一次可以运货吨.
(1)求辆大货车和辆小货车一次可以分别运多少吨;
(2)现有吨货物需要运输,货运公司拟安排大小货车共辆把全部货物一次运完.求至少需要安排几辆大货车?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】郑州市某中学体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为1.6米,现要做一个不锈钢的扶手及两根与垂直且长为1米的不锈钢架杆和 (杆子的底端分别为),且,求所用不锈钢材料的总长度.(即,结果精确到0.1米)参考数据()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知y关于x的函数表达式是,下列结论不正确的是( )
A.若,函数的最大值是5
B.若,当时,y随x的增大而增大
C.无论a为何值时,函数图象一定经过点
D.无论a为何值时,函数图象与x轴都有两个交点
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角坐标系中,直线与反比例函数的图象交于A,B两点,已知A点的纵坐标是2.
(1)求反比例函数的解析式.
(2)将直线沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校大课间活动,采用了三种活动形式:足球,排球,篮球,学生选择一种形式参与活动.
(1)小王对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,列出了两幅不完整的统计图,利用图中所提供的信息解决以下问题:①小王共调查统计了 人;②请将下图补充完整.
(2)假设被调查的甲、乙两名同学对这三项活动的选择是等可能的,请你用列表法或画树状图的方法求两人中至少有一个选择的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小明设计的“在一个平行四边形内作菱形”的尺规作图过程.
已知:四边形是平行四边形.
求作:菱形(点在上,点在上).
作法:①以为圆心,长为半径作弧,交于点;
②以为圆心,长为半径作弧,交于点;
③连接.所以四边形为所求作的菱形.
根据小明设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:∵,,
∴ = .
在中,.
即.
∴四边形为平行四边形.
∵,
∴四边形为菱形( )(填推理的依据).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】嵊州市三江购物中心为了迎接店庆,准备了某种气球,这些气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如下图所示.
(1)试写出这个函数的表达式;
(2)当气球的体积为2m3时,气球内气体的气压是多少?
(3)当气球内的气压大于120kPa时,气球将爆炸.为了安全起见,对气球的体积有什么要求?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com