精英家教网 > 初中数学 > 题目详情

【题目】如图1,在△ABC中,AB=AC=2,∠A=90°,将一块与△ABC全等的三角板的直角顶点放在点C上,一直角边与BC重叠.

(1)操作1:固定△ABC,将三角板沿C→B方向平移,使其直角顶点落在BC的中点M,如图2所示,探究:三角板沿C→B方向平移的距离为
(2)操作2:在(1)的情况下,将三角板BC的中点M顺时针方向旋转角度a(0°<a<90°),如图3所示,探究:设三角形板两直角边分别与AB、AC交于点P、Q,观察四边形MPAQ形状的变化,问:四边形MPAQ的面积S是否改变,若不变,求其面积;若改变,试说明理由;

(3)在(2)的情形下,连PQ,则当△MPQ的面积等于四边形MPAQ的面积的一半时,四边形MPAQ的形状为 , 此时BP=

【答案】
(1)
(2)

答:四边形MPAQ的面积S不变.

解法1:连接AM,

∵AB=AC=2,∠A=90°,

∴SABC= ABAC= ×2×2=2

又由(1)知,点M是BC中点

∴∠CAM=∠BAM=∠B=45°,AM⊥BC,

∴AM=BM,∠BMP+∠PMA=90°

∴SABM= SABC=1

又∠AMQ+∠PMA=90°

∴∠AMQ=∠BMP

∴△AMQ≌△BMP

∴S四边形MPAQ=SABM=1,

解法2:如图3,作MD⊥AC于D,作ME⊥AB于E,

∵AB=AC=2,∠A=90°

∴∠B=∠C=45°,四边形ADME是矩形,

SABC= ABAC= ×2×2=2

又∵点M是BC中点

∴Rt△CMD≌Rt△BME

∴四边形ADME是正方形,易求S正方形ADME= SABC=1

∴MD=ME,∠DMQ+∠QME=90°,

又∠EMP+∠QME=90°

∴∠DMQ=∠EMP

∴△DMQ≌△EMP

∴S四边形MPAQ=S正方形ADME=1,


(3)正方形;1
【解析】(1.)解:(1)BC= =2
∴CM= BC= 故三角板沿C→B方向平移的距离为:
所以答案是:
(3.)设AQ=PB=x,AP=2﹣x,
SMPQ=S四边形MAPQ﹣SAPQ=1﹣ AQAP=1﹣ x(2﹣x)= x2﹣x+1=
解得,x=1.
∴PB=1,
∴AQ=PB=AP=1,
∴点P是AB的中点,
∵M是BC中点,
∴PM∥AQ,
∴∠MPA=90°,
∵∠PAQ=∠PMQ=90°,
∴四边形MPAQ是矩形,
∵AQ=AP,
∴矩形MPAQ是正方形,
所以答案是:正方形,1.
【考点精析】解答此题的关键在于理解三角形的面积的相关知识,掌握三角形的面积=1/2×底×高,以及对相似三角形的性质的理解,了解对应角相等,对应边成比例的两个三角形叫做相似三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】光明中学八年级甲、乙、丙三个班中,每班的学生人数都为40名,某次数学考试的成绩统计如图:(每组分数含最小值,不含最大值)

丙班数学成绩频数统计表

分数

50~60

60~70

70~80

80~90

90~100

人数

1

4

15

11

9

 根据上图及统计表提供的信息,则80~90分这一组人数最多的班是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′C′分别是BC的对应点.

1)请画出平移后的△A′B′C′,并求△A′B′C′的面积;

2)若连接AA′CC′,则这两条线段之间的关系是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示,根据图中的数据(单位:m),解答下列问题:

(1)用含x的代数式表示地面总面积;

(2)x=4,y=2时,铺1 m2地砖的平均费用为30元,那么铺地砖的总费用为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.
(1)求证:DP是⊙O的切线;
(2)若⊙O的半径为3cm,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列解答过程:(1)如图甲,AB∥CD,探索∠P与∠A,∠C之间的关系.

(2)如图乙和图丙,AB∥CD,请根据上述方法分别探索两图中∠P与∠A,∠C之间的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】是某汽车行驶的路程S(km)与时间t(min)的函数关系图.观察图中所提供的信息,解答下列问题:

1)汽车在前9分钟内的平均速度是多少?

2)汽车在中途停了多长时间?

316≤t≤30时,求St的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过15(15)时,每吨按政府补贴优惠价收费;每月超过15吨时,超过部分每吨按市场调节价收费.小明家1月份用水23吨,交水费35元,2月份用水19吨,交水费25元.

(1)求每吨水的政府补贴优惠价与市场调节价分别是多少;

(2)小明家3月份用水24吨,他家应交水费多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(-1,3)的对应点A′的坐标是________.

查看答案和解析>>

同步练习册答案