| A. | 9 | B. | 25 | C. | 34 | D. | 无法确定 |
分析 画出l1到l2,l2到l3的距离,分别交l2,l3于E,F,通过AAS证明△ABE≌△BCF,得出BF=AE,再由勾股定理即可得出结论.
解答
解:过点A作AE⊥l2,过点C作CF⊥l2,
∴∠CBF+∠BCF=90°,
四边形ABCD是正方形,
∴AB=BC=CD=AD,
∴∠DAB=∠ABC=∠BCD=∠CDA=90°,
∴∠ABE+∠CBF=90°,
∵l1∥l2∥l3,
∴∠ABE=∠BCF,
在△ABE和△BCF中,
$\left\{\begin{array}{l}{∠AEB=∠BFC}\\{∠ABE=∠BCF}\\{AB=BC}\end{array}\right.$,
∴△ABE≌△BCF(AAS),
(画出L1到L2,L2到L3的距离,分别交L2,L3于E,F),
∴BF=AE,
∴BF2+CF2=BC2,
∴BC2=32+52=34.
故选C.
点评 此题考查了全等三角形的判定与性质,勾股定理,以及正方形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com