精英家教网 > 初中数学 > 题目详情
9.如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=50°,则∠ADC的度数为70°.

分析 根据角平分线的定义求出∠DAC,根据直角三角形两锐角互余求出∠ACE,再求出∠ACD,然后利用三角形的内角和即可得解.

解答 解:∵AD是△ABC的角平分线,∠BAC=60°,
∴∠DAC=30°,
∵CE是△ABC的高,
∴∠AEC=90°,
∴∠ACE=30°,
∴∠ACD=80°,
在△ACD中,∠ADC=180°-30°-80°=70°,
故答案为:70°.

点评 本题考查了三角形的内角和定理,角平分线的定义,熟记概念并准确识图,理清图中各角度之间的关系是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

19.如图,数轴上点A所对应的数是-$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知抛物线y=-2x2+4x+6.
(1)用配方法求该抛物线的顶点坐标;
(2)直接写出-2x2+4x+6>0时,x的取值范围是-1<x<3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,AD平分∠BAC,DE⊥AB于点E,S△ACD=3,DE=2,则AC长是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列各式中,计算不正确的是(  )
A.($\sqrt{3}$)2=3B.$\sqrt{(-3)^{2}}$=-3C.(a52=a10D.2a2•(-3a3)=-6a5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.一个正方体六个面分别标有字母A、B、C、D、E、F,其展开如图所示,已知:A=x2-2xy、B=A-C,C=3xy+y2,若该正方体相对两个面上的多项式的和相等,试用x、y的代数式表示多项式D,并求当x=-1,y=-2时,多项式D的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.对于正数x,规定f(x)=$\frac{x}{1+x}$,例如f(2)=$\frac{2}{1+2}=\frac{2}{3}$,f(3)=$\frac{3}{1+3}=\frac{3}{4}$,f($\frac{1}{2}$)=$\frac{\frac{1}{2}}{1+\frac{1}{2}}=\frac{1}{3}$,f($\frac{1}{3}$)=$\frac{\frac{1}{3}}{1+\frac{1}{3}}=\frac{1}{4}$,计算:f($\frac{1}{2016}$)+f($\frac{1}{2015}$)+f($\frac{1}{2014}$)+…+f($\frac{1}{3}$)+f($\frac{1}{2}$)+f(1)+f(2)+f(3)+…+f(2014)+f(2015)+f(2016)的结果是$\frac{4031}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.为了迎接春节,某县准备用灯笼美化滨河路,许采用A、B两种不同造型的灯笼共600个.且A型灯笼的数量比B型灯笼的$\frac{2}{3}$多15个.
(1)求A、B两种灯笼各需多少个?
(2)已知A、B型灯笼的单价分别为40元、30元,则这次美化工程需多少费用?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图是抛物线y1=ax2+bx+c(a≠0)的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:
①2a+b=0;
②abc>0;
③方程ax2+bx+c=3有两个相等的实数根;
④抛物线与x轴的另一个交点是(-1,0);
⑤当1<x<4时,有y2<y1
其中正确结论的个数是(  )
A.5B.4C.3D.2

查看答案和解析>>

同步练习册答案