精英家教网 > 初中数学 > 题目详情
19.如图是抛物线y1=ax2+bx+c(a≠0)的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:
①2a+b=0;
②abc>0;
③方程ax2+bx+c=3有两个相等的实数根;
④抛物线与x轴的另一个交点是(-1,0);
⑤当1<x<4时,有y2<y1
其中正确结论的个数是(  )
A.5B.4C.3D.2

分析 根据抛物线对称轴方程对①进行判断;由抛物线开口方向得到a<0,由对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,于是可对②进行判断;根据顶点坐标对③进行判断;根据抛物线的对称性对④进行判断;根据函数图象得当1<x<4时,一次函数图象在抛物线下方,则可对⑤进行判断.

解答 解:∵抛物线的顶点坐标A(1,3),
∴抛物线的对称轴为直线x=-$\frac{b}{2a}$=1,
∴2a+b=0,所以①正确;
∵抛物线开口向下,
∴a<0,
∴b=-2a>0,
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∴abc<0,所以②错误;
∵抛物线的顶点坐标A(1,3),
∴x=1时,二次函数有最大值,
∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;
∵抛物线与x轴的一个交点为(4,0)
而抛物线的对称轴为直线x=1,
∴抛物线与x轴的另一个交点为(-2,0),所以④错误;
∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)
∴当1<x<4时,y2<y1,所以⑤正确.
故选:C.

点评 本题考查了二次项系数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

9.如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=50°,则∠ADC的度数为70°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.在期末复习课上,老师要求写出几个与实数有关的结论:小明同学写了以下5个:
①任何无理数都是无限不循环小数;
②有理数与数轴上的点一一对应;
③在1和3之间的无理数有且只有$\sqrt{2}、\sqrt{3}、\sqrt{5}、\sqrt{7}$这4个;
④$\frac{π}{2}$是分数,它是有理数;
⑤由四舍五入得到的近似数7.30表示大于或等于7.295,而小于7.305的数.
其中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是5<x<10cm.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.一只小虫从点A(-2,1)出发,先向右跳4个单位,再向下跳3个单位,到达点B处,则点B的坐标是(  )
A.(-5,5)B.(2,-2)C.(1,5)D.(2,2)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.若代数式$\sqrt{x+1}$有意义,则x必须满足条件(  )
A.x≥-1B.x≠-1C.x≥1D.x≤-1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.某商场以每件40元的价格购进一批商品,当商场按每件50元出售时,可售出500件,经调查,该商品每涨价1元,其销售量就会减少10件;问:
(1)这批商品商场为了能获利8000元,当要求售价不高于每件70元时,售价应定为多少?
(2)总利润能否达到9500元,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.对于题目:“化简并求值:$\frac{1}{a}+\sqrt{\frac{1}{{a}^{2}}+{a}^{2}-2}$,其中a=$\frac{1}{5}$.”
甲、乙两人的解答不同,甲的解答是:
$\frac{1}{a}+\sqrt{\frac{1}{{a}^{2}}+{a}^{2}-2}$=$\frac{1}{a}+\sqrt{(a-\frac{1}{a})^{2}}$=$\frac{1}{a}+a-\frac{1}{a}=\frac{1}{5}$;
乙的答案是:$\frac{1}{a}+\sqrt{\frac{1}{{a}^{2}}+{a}^{2}-2}$=$\frac{1}{a}+\sqrt{(\frac{1}{a}-a)^{2}}$=$\frac{1}{a}+\frac{1}{a}-a$=$\frac{2}{a}-a$=$\frac{49}{5}$.
谁的解答是错误的?谁的解答是正确的?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.一组数据-2,-1,0,3,5的极差是7.

查看答案和解析>>

同步练习册答案