精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,,在矩形内有一点P,同时满足,延长CPAD于点E,则______.

【答案】

【解析】

延长APCDF,根据已知条件得到∠CPF+CPB=90°,根据矩形的性质得到∠DAB=ABC=90°,BC=AD=3,根据余角的性质得到∠EAP=ABP,推出AE=PE,根据勾股定理CD2+DE2=CE2即可求出AE的长,继而得到结论.

解:延长APCDF

∵∠APB=90°,
∴∠FPB=90°,
∴∠CPF+CPB=90°,
∵四边形ABCD是矩形,
∴∠DAB=ABC=90°,BC=AD=3
∴∠EAP+BAP=ABP+BAP=90°,
∴∠EAP=ABP
CP=CB=3
∴∠CPB=CBP
∴∠CPF=ABP=EAP
∵∠EPA=CPF
∴∠EAP=APE
AE=PE
CD2+DE2=CE2
42+3-AE2=3+AE2

CE=3+=

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线 轴、轴分别交于点BC经过BC两点的抛物线轴的另一个交点为A

(1)求该抛物线的解析式;

2若点P在直线下方的抛物线上,过点PPD轴交于点DPE轴交于点E

PD+PE的最大值

(3)设F为直线上的点,以ABPF为顶点的四边形能否构成平行四边形?若能,求出点F的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,由两个长为9,宽为3的全等矩形叠合而得到四边形ABCD,则四边形ABCD面积的最大值是_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在东西方向的海岸线l上有长为300米的码头AB,在码头的最西端A处测得轮船M在它的北偏东45°方向上;同一时刻,在A点正东方向距离100米的C处测得轮船M在北偏东22°方向上.

1)求轮船M到海岸线l的距离;(结果精确到0.01米)

2)如果轮船M沿着南偏东30°的方向航行,那么该轮船能否行至码头AB靠岸?请说明理由.

(参考数据:sin22°0.375cos22°0.927tan22°0.4041.732.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究

如图,抛物线经过点A(-2,0)B(4,0)两点,与轴交于点C,点D是抛物线上一个动点,设点D的横坐标为.连接ACBCDBDC,

(1)求抛物线的函数表达式;

(2)△BCD的面积等于△AOC的面积的时,求的值;

(3)(2)的条件下,若点M轴上的一个动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点BDMN为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数的图象如图所示,对称轴是直线.下列结论:①;②;③;④(为实数).其中结论正确的个数为( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.

1)直接写出书店销售该科幻小说时每天的销售量(本)与销售单价(元)之间的函数关系式及自变量的取值范围.

2)书店决定每销售1本该科幻小说,就捐赠元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某同学报名参加学校秋季运动会,有以下 5 个项目可供选择:径赛项目:100m、200m、1000m(分别用 A1、A2、A3 表示);田赛项目:跳远,跳高(分别用 T1、T2 表示).

(1)该同学从 5 个项目中任选一个,恰好是田赛项目的概率 P

(2)该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率 P1,利用列表法或树状图加以说明;

(3)该同学从 5 个项目中任选两个,则两个项目都是径赛项目的概率 P2 为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在中,∠ACB=90°,延长边BA至点D,使AD=AC,联结CD.

1)求∠D的正切值;

2)取边AC的中点E,联结BE并延长交边CD于点F,求的值.

查看答案和解析>>

同步练习册答案