【题目】“足球运球”是中考体育必考项目之一兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.
(1)本次一共抽取了几名九年级学生?
(2)补全条形统计图;
(3)在扇形统计图中,C对应的扇形的圆心角是几度?
(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?
科目:初中数学 来源: 题型:
【题目】如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱长进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图,已知在中,,,延长到,使,以为圆心,长为半径作⊙交延长线于点,连接.
(1)求证:是⊙的切线;
(2)若AB=2,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.
(1)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想:
(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.
(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?
(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案.请用列表或画树状图的方法求新图案是轴对称图形的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与交于点,过点作轴的平行线,分别交两条抛物线于点,则以下结论:①无论取何值,的值总是正数;②;③其中正确结论是( )
A. ①②B. ①③C. ②③D. 都正确
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】拋物线分别交轴于点,交轴于点.抛物线的对称轴与轴相交于点,直线与抛物线的对称轴相交于点.
(1)直接写出抛物线的解折式和点的坐标;
(2)如图1,点为线段上的动点,点为线段上的动点,且.在点,点移动的过程中,是否有最小值?如果有,请求出最小值;
(3)以点为旋转中心,将直线绕点逆时针旋转,旋转角为 (),直线旋转时,与抛物线的对称轴相交于点,与抛物线的另一个交点为点.
①如图2,当直线旋转到与直线重合时,判断线段的数量关系?并说明理由
②当为等腰三角形时,请直按写出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,,以AB为直径作半圆O,点P从点A出发,沿AD方向以每秒1个单位的速度向点D运动,点Q从点C出发,沿C8方向以每秒3个单位的速度向点B运动,两点同时开始运动,当一点到达终点后,另一点也随之停止运动。设运动时间为.
(1)设点M为半圆上任意一点,则DM的最大值为______,最小值为______.
(2)设PQ交半圆于点F和点G(点F在点G的上方),当时,求的长度;
(3)在运动过程中,PQ和半圆能否相切?若相切,请求出此时l的值,若不能相切,请说明理由;
(4)点N是半圆上一点,且,当运动时,PQ与半圆的交点恰好为点N,直接写出此时t的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出( )
A.直角三角形的面积
B.最大正方形的面积
C.较小两个正方形重叠部分的面积
D.最大正方形与直角三角形的面积和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com