9£®ÏÂÁз½³Ì×éÖУ¬ÄÄÏîµÄ½âÊÇ$\left\{\begin{array}{l}{x=-1}\\{y=-2}\end{array}\right.$£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}{x+y=1}\\{x-y=2}\end{array}\right.$B£®$\left\{\begin{array}{l}{x+y=1}\\{x-2y=3}\end{array}\right.$C£®$\left\{\begin{array}{l}{2x=y}\\{y+x=-3}\end{array}\right.$D£®$\left\{\begin{array}{l}{\frac{x}{2}-\frac{y}{6}=1}\\{x+y=3}\end{array}\right.$

·ÖÎö ·Ö±ðÇó³ö¸÷ÏîÖз½³Ì×éµÄ½â£¬¼´¿É×÷³öÅжϣ®

½â´ð ½â£ºA¡¢$\left\{\begin{array}{l}{x+y=1¢Ù}\\{x-y=2¢Ú}\end{array}\right.$£¬
¢Ù+¢ÚµÃ£º2x=3£¬¼´x=1.5£¬
°Ñx=1.5´úÈë¢ÙµÃ£ºy=-0.5£¬
²»ºÏÌâÒ⣻
B¡¢$\left\{\begin{array}{l}{x+y=1¢Ù}\\{x-2y=3¢Ú}\end{array}\right.$£¬
¢Ù-¢ÚµÃ£º3y=-2£¬¼´y=-$\frac{2}{3}$£¬
¢Ù¡Á2+¢ÚµÃ£º3x=5£¬¼´x=$\frac{5}{3}$£¬
²»ºÏÌâÒ⣻
C¡¢$\left\{\begin{array}{l}{2x=y¢Ù}\\{y+x=-3¢Ú}\end{array}\right.$£¬
°Ñ¢Ù´úÈë¢ÚµÃ£º2x+x=-3£¬¼´x=-1£¬
°Ñx=-1´úÈë¢ÙµÃ£ºy=-2£¬
Âú×ãÌâÒ⣻
D¡¢·½³Ì×éÕûÀíµÃ£º$\left\{\begin{array}{l}{3x-y=6¢Ù}\\{x+y=3¢Ú}\end{array}\right.$£¬
¢Ù+¢ÚµÃ£º4x=9£¬¼´x=$\frac{9}{4}$£¬
°Ñx=$\frac{9}{4}$´úÈë¢ÚµÃ£ºy=$\frac{3}{4}$£¬
²»ºÏÌâÒ⣮
¹ÊÑ¡C£®

µãÆÀ ´ËÌ⿼²éÁ˶þÔªÒ»´Î·½³Ì×éµÄ½â£¬·½³Ì×éµÄ½â¼´ÎªÄÜʹ·½³Ì×éÖÐÁ½·½³Ì¶¼³ÉÁ¢µÄδ֪ÊýµÄÖµ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÔÚÏÂÃæµÄÍø¸ñͼÖУ¬Ã¿¸öСÕý·½Ðεı߳¤¾ùΪ1¸öµ¥Î»£¬ÔÚRt¡÷ABCÖУ¬
¡ÏC=90¡ã£¬AC=3£¬BC=6£®
¢ÙÊÔ×÷³ö¡÷ABCÒÔAΪÐýתÖÐÐÄÑØË³Ê±Õë·½ÏòÐýת90¡ãºóµÄͼÐΡ÷AB1C1£»
¢ÚÈôµãCµÄ×ø±êΪ£¨-4£¬-1£©£¬ÊÔ½¨Á¢ºÏÊʵÄÖ±½Ç×ø±êϵ£¬²¢Ð´³öA£¬BÁ½µãµÄ×ø±ê£»
¢ÛÔÚËù½¨µÄÖ±½Ç×ø±êϵÖУ¬×÷³öÓë¡÷ABC¹ØÓÚÔ­µã¶Ô³ÆµÄͼÐΡ÷A2B2C2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Èçͼ£¬½«¡÷ABC·ÅÔÚÿ¸öСÕý·½Ðεı߳¤Îª1µÄÍø¸ñÖУ¬µãA£¬µãB£¬µãC¾ùÂäÔÚ¸ñµãÉÏ£®
£¨¢ñ£©¡÷ABCµÄÃæ»ýµÈÓÚ7£»
£¨¢ò£©ÇëÔÚÈçͼËùʾµÄÍø¸ñÖУ¬ÓÃÎ޿̶ȵÄÖ±³ß£¬ÒÔBCËùÔÚÖ±ÏßΪ¶Ô³ÆÖᣬ×÷³ö¡÷ABC¹ØÓÚÖ±ÏßBC¶Ô³ÆµÄͼÐΣ¬²¢¼òҪ˵Ã÷»­Í¼·½·¨£¨²»ÒªÇóÖ¤Ã÷£©Èçͼ2ÖУ¬È¡¸ñµãD¡¢E£¬Á¬½ÓDE£¬È¡¸ñµãF£¬×÷Ö±ÏßAFÓëDEÏཻÓÚµãA¡ä£¬Á¬½ÓA¡äB£¬A¡äC£¬Ôò¡÷BCA¡ä¼´ÎªËùÇó£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®»Ø´ðÏÂÁÐÁ½Ìâ

£¨1£©Èçͼ1£¬ÒÑÖªÏòÁ¿$\overrightarrow a$¡¢$\overrightarrow b$£¬Çó×÷£º$\overrightarrow a$+$\overrightarrow b$
£¨2£©Èçͼ2£¬ÔÚËıßÐÎABCDÖУ¬Ìî¿Õ£º$\overrightarrow{BA}+\overrightarrow{AD}+\overrightarrow{DC}$=$\overrightarrow{BC}$£»$\overrightarrow{BO}-\overrightarrow{BC}$=$\overrightarrow{CO}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Èçͼ£¬AB¡ÎCD£¬EF¡ÍCDÓÚE£¬EF½»CDÓÚF£¬ÒÑÖª¡Ï1=63¡ã£¬Ôò¡Ï2=27¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑ֪ijµãÏòÓÒÆ½ÒÆ3¸öµ¥Î»³¤¶È£¬ÔÙÏòÉÏÆ½ÒÆ3¸öµ¥Î»³¤¶ÈµÃµ½×ø±êÊÇ£¨-1£¬4£©£¬Ôò¸ÃµãÆ½ÒÆÇ°×ø±êÊÇ£¨¡¡¡¡£©
A£®£¨-4£¬1£©B£®£¨-4£¬7£©C£®£¨2£¬2£©D£®£¨2£¬7£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÔÚÈçͼµÄ·½¸ñÖ½ÖУ¬Ã¿¸öСÕý·½Ðεı߳¤¶¼ÊÇΪ1£®
£¨1£©»­³ö½«¡÷ABCÏòÏÂÆ½ÒÆ3¸ñµÃµ½µÄ¡÷A1B1C1£»
£¨2£©»­³ö¡÷A1B1C1ÒÔC1ΪÐýתÖÐÐÄ£¬Ë³Ê±ÕëÐýת90¡ãºóµÃµ½µÄ¡÷A2B2C1£»
£¨3£©Çó¡÷A1B1C1Ðýת¹ý³ÌÖУ¬É¨¹ý²¿·ÖµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®É躯Êýy=£¨m-2£©x2-|m|+m-1£¬
£¨1£©µ±mΪºÎֵʱ£¬ËüÊÇÒ»´Îº¯Êý£¿
£¨2£©µ±mΪºÎֵʱ£¬ËüÊÇÕý±ÈÀýº¯Êý£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖª¹ØÓÚx¡¢yµÄ·½³Ì×é$\left\{\begin{array}{l}{x+2y=k}\\{2x+3y=3k-1}\end{array}\right.$µÄ½âx¡¢yµÄÖµµÄºÍµÈÓÚ6£¬ÇókµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸