【题目】如图,四边形ADBC内接于⊙O,AD平分∠EDC,AE∥BC交直线BD于E.
(1)求证:AE是⊙O的切线;
(2)若CD为直径,tan∠ADE=2,求sin∠BDC的值.
【答案】(1)见解析(2).
【解析】
(1)连接AB,连接AO并延长交BC于F,由圆内接四边形的性质得出∠ADE=∠ACB,再由圆周角定理证出∠ABC=∠ACB,得出AB=AC,得出AF⊥BC,证出AE⊥AF即可得出结论;
(2)连接AO并延长交BC于G,由圆周角定理得出∠DAC=∠CBD=90°,证出四边形AEBG是矩形,得出BG=AE,AG=BE,由三角函数得出AE=2DE,AC=2AD,AG=2CG=BC=2AE=4DE,得出AD=DE,CD=AD=5DE,即可得出结果.
(1)证明:连接AB,连接AO并延长交BC于F,如图1所示:
∵四边形ADBC内接于⊙O,AD平分∠EDC,
∴∠ADE=∠ACB,∠ADE=∠ADC,
∵∠ADC=∠ABC,
∴∠ABC=∠ACB,
∴AB=AC,
∴AF⊥BC
∵AE∥BC,
∴AE⊥AF,
∴AE是⊙O的切线;
(2)解:连接AO并延长交BC于G,如图2所示:
∵CD为直径,
∴∠DAC=∠CBD=90°,
∵AE∥BC,
∴∠E+∠CBD=90°,
∴∠E=90°,
∴四边形AEBG是矩形,
∴BG=AE,AG=BE,
∵∠ADE=∠ADC=∠ACB,
∴,
∴AE=2DE,AC=2AD,AG=2CG=BC=2AE=4DE,
∴AD=DE,CD=AD=5DE,
∴.
科目:初中数学 来源: 题型:
【题目】已知,抛物线(a<0)与x轴交于A(3,0)、B两点,与y轴交于点C,抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE=.
(1)求抛物线的解析式及顶点D的坐标;
(2)求证:直线DE是△ACD外接圆的切线;
(3)在直线AC上方的抛物线上找一点P,使,求点P的坐标;
(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系内,四边形OABC是矩形,四边形ADEF是正方形,点A,D在x轴的正半轴上,点F在BA上,点B、E均在反比例函数y=(k≠0)的图象上,若点B的坐标为(1,6),则正方形ADEF的边长为( )
A.1B.2C.4D.6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,过点A(0,4)的圆的圆心坐标为C(2,0),B是第一象限圆弧上的一点,且BC⊥AC,抛物线经过C、B两点,与x轴的另一交点为D.
(1)点B的坐标为( , ),抛物线的表达式为 .
(2)如图2,求证:BD//AC;
(3)如图3,点Q为线段BC上一点,且AQ=5,直线AQ交⊙C于点P,求AP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,的长为,则图中阴影部分的面积为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一天晚上,李明利用灯光下的影子长来测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得AB=1.2m,已知标杆直立时的高为1.8m,求路灯的高CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角系中,点A在x轴正半轴上,点B在y轴正半轴上,∠ABO=30°,AB=2,以AB为边在第一象限内作等边△ABC,反比例函数的图象恰好经过边BC的中点D,边AC与反比例函数的图象交于点E.
(1)求反比例函数的解析式;
(2)求点E的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知是一次函数的图象与反比例函数的图象的两个交点
(1)求此反比例函数和一次函数的解析式.
(2)根据图象写出使反比例函数的值大于一次函数的值的x取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com