分析 (1)利用轴对称的性质以及等腰三角形的性质得出即可;
(2)由轴对称的性质可得:EF=BF,AE=AB=AD,∠ABF=∠AEF=∠ADF,进而利用勾股定理得出答案;
(3)根据α=30°,α=120°两种情况进行解答即可.
解答 解:(1)当α=20°,则∠PAB=∠PAE=20°,AE=AB=AD,
∵四边形ABCD是正方形,
∴∠BAD=90°,
∴∠EAD=130°,
∴∠ADF=25°,
∵点B关于直线AP的对称点为E,![]()
∴EF=BF,AE=AB,
∴△AEF和△ABF关于直线AP对称,
∴∠3=∠4,
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∴AE=AD,∠1+∠5=90°,
∴∠4=∠5,
∴∠3=∠5,
∵∠1=∠2,
∴∠2+∠3=∠1+∠5=90°,
∴∠BFD=90°,
∴BF⊥ED,
∵AE=AB,
∴△BEF是等腰直角三角形;
(2)BF2+FD2=2AB2.
理由:如图2,
连接BD,![]()
由轴对称的性质可得:EF=BF,AE=AB=AD,∠ABF=∠AEF=∠ADF,
则∠BFD=∠BAD=90°,
故BF2+FD2=BD2,
则BF2+FD2=2AB2.
(3)正方形ABCD的边长为6,当α=30°时,DE=$3\sqrt{6}+3\sqrt{2}$;当α=120°时,DE=$3\sqrt{6}-3\sqrt{2}$.
点评 本题考查了正方形的性质、轴对称的性质、旋转的性质以及等腰三角形的判定与性质、面积的计算方法;熟练掌握正方形和轴对称的性质得出等腰三角形,进一步得出角之间的关系是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com