精英家教网 > 初中数学 > 题目详情
9.化简:$\frac{{x}^{2}-2x}{{x}^{2}-4}$$÷\frac{x}{x+2}$+x+2,其中x=1.

分析 首先将原式能分解因式的进行分解因式,再化简求出答案.

解答 解:$\frac{{x}^{2}-2x}{{x}^{2}-4}$$÷\frac{x}{x+2}$+x+2,
=$\frac{x(x-2)}{(x-2)(x+2)}$÷$\frac{x+2}{x}$+x+2
=x+3,
将x=1代入上式可得,原式=1+3=4.

点评 此题主要考查了分式的化简求值,正确分解因式是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.已知2-$\sqrt{5}$是方程x2-4x+c=0的一个根,求(x1-x22的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.若抛物线沿y轴向上平移2个单位后,又沿x轴向右平移2个单位,得到的抛物线的函数关系式为y=5(x-4)2+3,则原抛物线的函数关系式y=5x2-20x+21.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.解不等式组:$\left\{\begin{array}{l}{3-x>x+1}\\{(2x-3)-(5x+2)≤1}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.若a>0,b<0,化简$\sqrt{-{a}^{2}{b}^{3}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知抛物线y=mx2+2mx+n交x轴于A、B两点,交y轴于C(0,3),顶点为D,且AB=4.

(1)求抛物线的解析式;
(2)点P为对称轴右侧抛物线上一点,点S在x轴上,当△DPS为等腰直角三角形时,求点P的坐标;
(3)将抛物线沿对称轴向下平移,使顶点落在x轴上,设点D关于x轴的对称点为M,过M的直线交抛物线于E、F(点E在对称轴左侧),连DE,DF,且S△DEF=20.求E、F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图1,在平面直角坐标系中,抛物线y=ax2+bx+8(a≠0)与x轴交于A、B两点、与y轴交于点C,经过点B的直线y=-x+4与y轴交于点D,点P在抛物线的对称轴上,且P点的横坐标是1.
(1)求抛物线的解析式;
(2)在第一象限的抛物线上有一个动点M,过点M作直线MN⊥x轴于点N,交直线BD于点E,若点M到直线BD的距离与BN的长度之比为2$\sqrt{2}$:1,求点M的坐标;
(3)如图2,若点P位于x轴上方,且∠PAB=60°,点Q是对称轴上的一个动点,将△BPQ绕点P顺时针旋转60°得到△B′PQ′(B的对应点为B′,Q的对应点为Q′),是否存在点Q,使△BQQ′的面积是$\frac{\sqrt{3}}{4}$?若存在,请求出PQ的长;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.用给定长度的绳子围成下面四种几何图形,其面积一定最大的是(  )
A.三角形B.平行四边形C.正方形D.菱形

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.下列各组式子中,为同类项的是(  )
A.5x2y与-2xy2B.3x与3x2C.-2xy与5yxD.4a2b与3a2c

查看答案和解析>>

同步练习册答案