精英家教网 > 初中数学 > 题目详情

【题目】如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.

(1)试判断BD与AC的位置关系和数量关系,并说明理由;
(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;
(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.
①试猜想BD与AC的数量关系,并说明理由;
②你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.

【答案】
(1)

解:BD=AC,BD⊥AC,

理由:延长BD交AC于F.

∵AE⊥BC,

∴∠AEB=∠AEC=90°,

在△BED和△AEC中

∴△BED≌△AEC,

∴BD=AC,∠DBE=∠CAE,

∵∠BED=90°,

∴∠EBD+∠BDE=90°,

∵∠BDE=∠ADF,

∴∠ADF+∠CAE=90°,

∴∠AFD=180°﹣90°=90°,

∴BD⊥AC


(2)

解:

不发生变化,

理由是:∵∠BEA=∠DEC=90°,

∴∠BEA+∠AED=∠DEC+∠AED,

∴∠BED=∠AEC,

在△BED和△AEC中

∴△BED≌△AEC,

∴BD=AC,∠BDE=∠ACE,

∵∠DEC=90°,

∴∠ACE+∠EOC=90°,

∵∠EOC=∠DOF,

∴∠BDE+∠DOF=90°,

∴∠DFO=180°﹣90°=90°,

∴BD⊥AC


(3)

解:能.

理由:∵△ABE和△DEC是等边三角形,

∴AE=BE,DE=EC,∠EDC=∠DCE=60°,∠BEA=∠DEC=60°,

∴∠BEA+∠AED=∠DEC+∠AED,

∴∠BED=∠AEC,

在△BED和△AEC中中

∴△BED≌△AEC,

∴∠BDE=∠ACE,

∴∠DFC=180°﹣(∠BDE+∠EDC+∠DCF)

=180°﹣(∠ACE+∠EDC+∠DCF)

=180°﹣(60°+60°)

=60°,

即BD与AC所成的角的度数为60°或120°


【解析】(1)延长BD交AC于F,求出∠AEB=∠AEC=90°,证出△BED≌△AEC,推出BD=AC,∠DBE=∠CAE,根据∠EBD+∠BDE=90°推出∠ADF+∠CAE=90°,求出∠AFD=90°即可;(2)求出∠BED=∠AEC,证出△BED≌△AEC,推出BD=AC,∠BDE=∠ACE,根据∠ACE+∠EOC=90°求出∠BDE+∠DOF=90°,求出∠DFO=90°即可;(3)求出∠BED=∠AEC,证出△BED≌△AEC,推出∠BDE=∠ACE,根据三角形内角和定理求出∠DFC即可.
【考点精析】掌握三角形的内角和外角和全等三角形的性质是解答本题的根本,需要知道三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角;全等三角形的对应边相等; 全等三角形的对应角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°. 因城市规划的需要,将在A、B两地之间修建一条笔直的公路.

(1)求改直后的公路AB的长;

(2)问公路改直后该段路程比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子,或可以求出一些不规则图形的面积.
(1)如图1,是将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,试用不同的方法计算这个图形的面积,你能发现什么结论,请写出来.
(2)如图2,是将两个边长分别为a和b的正方形拼在一起,B、C、G三点在同一直线上,连接BD和BF,若两正方形的边长满足a+b=10,ab=20,你能求出阴影部分的面积吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在△ABC中,∠A=90°,BD是∠ABC的平分线,DE是BC的垂直平分线,则∠C=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形纸片ABCD中,AD=1,AB=2.将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AB、CD交于点G、F,AE与FG交于点O.当△AED的外接圆与BC相切于BC的中点N.则折痕FG的长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,根据图形填空.

(1)∠A和是同位角;
(2)∠B和是内错角;
(3)∠A和是同旁内角.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知E为等腰△ABC的底边BC上一动点,过E作EF⊥BC交AB于D,交CA的延长线于F,问:

(1)∠F与∠ADF的关系怎样?说明理由;
(2)若E在BC延长线上,其余条件不变,上题的结论是否成立?若不成立,说明理由;若成立,画出图形并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,DE⊥AB于点E.

(1)求证:△ACD≌△AED

(2)若AC=5,△DEB的周长为8,求△ABC的周长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】化简:2m2﹣(53m2+7m+23m2).

查看答案和解析>>

同步练习册答案