【题目】如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB、AO的延长线于点D、E,AE交半圆O于点F,连接CF.
(1)判断直线DE与半圆O的位置关系,并说明理由;
(2)①求证:CF=OC;
②若半圆O的半径为12,求阴影部分的周长.
【答案】(1)DE是⊙O的切线;(2)①证明见解析;②4π+12+.
【解析】试题分析:(1)结论:DE是⊙O的切线.首先证明△ABO,△BCO都是等边三角形,再证明四边形BDCG是矩形,即可解决问题;
(2)①只要证明△OCF是等边三角形即可解决问题;
②求出EC、EF、弧长CF即可解决问题.
试题解析:(1)结论:DE是⊙O的切线.
理由:∵四边形OABC是平行四边形,又∵OA=OC,∴四边形OABC是菱形,
∴OA=OB=AB=OC=BC,∴△ABO,△BCO都是等边三角形,∴∠AOB=∠BOC=∠COF=60°,
∵OB=OF,∴OG⊥BF,
∵AF是直径,CD⊥AD,∴∠ABF=∠DBG=∠D=∠BGC=90°,∴四边形BDCG是矩形,
∴∠OCD=90°,∴DE是⊙O的切线;
(2)①由(1)可知:∠COF=60°,OC=OF,∴△OCF是等边三角形,∴CF=OC;
②在Rt△OCE中,∵OC=12,∠COE=60°,∠OCE=90°,
∴OE=2OC=24,EC=,
∵OF=12,∴EF=12,∴的长= =4π,
∴阴影部分的周长为4π+12+.
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有( )
A. 2个 B. 3个 C. 4个 D. 无数个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“富春包子”是扬州特色早点,富春茶社为了了解顾客对各种早点的喜爱情况,设计了如右图的调查问卷,对顾客进行了抽样调查.根据统计数据绘制了如下尚不完整的统计图.
根据以上信息,解决下列问题:
(1)条形统计图中“汤包”的人数是 ,扇形统计图中“蟹黄包”部分的圆心角为 °;
(2)根据抽样调查结果,请你估计富春茶社1000名顾客中喜欢“汤包”的有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1) 若方程4x-1=3x+1和2m+x=1的解相同.求m的值.
(2)在公式S= (a+b)h中,已知S=120,b=18,h=8.求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】坐火车从上海到娄底,高铁G1329次列车比快车K575次列车少需要9小时,已知上海到娄底的铁路长约1260千米,G1329的平均速度是K575的2.5倍.
(1)求K575的平均速度;
(2)高铁G1329从上海到娄底只需几小时?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com