精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD是⊙O的圆内接四边形,DEACBC的延长线于点E

1)求证:AB·DE=BD·DC

2)如果AD=CD,求证:DE为⊙O的切线.

【答案】1)见解析;(2)见解析

【解析】

1)根据圆内接四边形的性质及平角的性质证得∠DCE=BAD,利用平行线的性质及圆周角定理证得∠E=ADB,继而证得△ABD∽△CDE,从而证得结论;

2)连接OD,根据垂径定理证得ODAC,利用ACDE结合切线的判定定理即可证得结论.

1)∵四边形ABCD是圆内接四边形,

∴∠BAD+∠BCD=180°

由∵∠BCD+∠DCE=180°

∴∠DCE=BAD

DEAC

∴∠E=ACB

又∵∠ACB=ADB

∴∠E=ADB

∴△ABD∽△CDE

AB·DE=BD·DC

2)连接OD

AD=CD

=,即D的中点,

ODAC

ACDE

ODDE

DE是⊙O的切线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】问题:如图(1),点EF分别在正方形ABCD的边BCCD上,∠EAF=45°试判断BEEFFD之间的数量关系.

【发现证明】小聪把ABE绕点A逆时针旋转90°ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.

【类比引申】如图(2),四边形ABCD中,∠BAD≠90°AB=ADB+D=180°,点EF分别在边BCCD上,则当∠EAF与∠BAD满足  关系时,仍有EF=BE+FD请证明你的结论.

【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°ADC=120°BAD=150°,道路BCCD上分别有景点EF,且AEADDF=401米,现要在EF之间修一条笔直道路,求这条道路EF的长.(结果取整数,参考数据: =1.41 =1.73

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,把45°的直三角板的直角顶点E放在边长为6的正方形ABCD的一边BC上,直三角板的一条直角边经过点D,以DE为一边作矩形DEFG,且GF过点A,得到图1

1)求矩形DEFG的面积;

2)若把正方形ABCD沿着对角线AC剪掉一半得到等腰直角三角形ABC,把45°的直三角板的一个45°角的顶点与等腰直角三角形ABC的直角顶点B重合,直三角板夹这个45°角的两边分别交CACA的延长线于点HP,得到图2.猜想:CHPAHP之间的数量关系,并说明理由;

3)若把边长为6的正方形ABCD沿着对角线AC剪掉一半得到等腰直角三角形ABC,点MRtABC内一个动点,连接MAMBMC,设MA+MB+MCy,直接写出 的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图一次函数y1=kx+b的图象与反比例函数的图象交于点A25),C5n),y轴于点Bx轴于点D

1)求反比例函数和一次函数y1=kx+b的表达式

2)连接OAOCAOC的面积

3)根据图象直接写出y1y2x的取值范围

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:四边形ABCD内接于⊙O,对角线ACBD,⊙O的半径为6cmAD=4cmOEBC,垂足为E.则弦BC的长为____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC 中,∠ACB=90°,AC=6,BC=8,点D是线段AB上的动点,M、N分别是AD、CD的中点,连接MN,当点D由点A向点B运动的过程中,线段MN所扫过的区域的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图1,O是坐标原点,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点,AB⊥y轴于点A,AB=2,AO=4,OC=5,点D是线段AO上一动点,连接CD、BD.

(1)求出抛物线的解析式;

(2)如图2,抛物线的对称轴分别交BD、CD于点E、F,当△DEF为等腰三角形时,求出点D的坐标;

(3)当∠BDC的度数最大时,请直接写出OD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某店因为经营不善欠下38000元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息)已知该店代理的某品牌服装的进价为每件40元,该品牌服装日的售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.

1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;

2)当销售价为多少元时,该店的日销售利润最大;

3)该店每天支付工资和其它费用共250元,该店能否在一年内还清所有债务.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB直径,CD上点,连结CB并延长与AD所在直线交于点F,垂足为点E,连结CE,且

1)证明:CE相切;

2)若,求AD的长度.

查看答案和解析>>

同步练习册答案