【题目】如图,矩形中,,,点分别在边,上,点分别在,上,,交于点,记.
(1)若的值是1,当时,求的值.
(2)若的值是,求的最大值和最小值.
(3)若的值是3,当点是矩形的顶点,,时,求的值.
【答案】(1);(2)最大值为,最小值为;(3)的值为或.
【解析】
(1)作EH⊥BC于H,MQ⊥CD于Q,设EF交MN于点O.证明△FHE≌△MQN(ASA),即可解决问题.
(2)由题意:2a≤MN≤a,a≤EF≤a,当MN的长取最大时,EF取最短,此时k的值最大,最大值=,当MN的最短时,EF的值取最大,此时k的值最小,最小值为.
(3)连接FN,ME.由k=3,MP=EF=3PE,推出,推出,由△PNF∽△PME,推出=2,ME∥NF,设PE=2m,则PF=4m,MP=6m,NP=12m,接下来分两种情形①如图2中,当点N与点D重合时,点M恰好与B重合.②如图3中,当点N与C重合,分别求解即可.
(1)作,,如图1.
∵四边形为正方形,
∴,,∴.
∵,
∴,,
∴,∴,
∴.
(2)∵,∴.
由题意得,,,
当取最长时,可取到最短,此时的值最大,最大值为,
当取最短时,可取到最长,此时的值最小,最小值为.
(3)连结,,
∵,,
∴,∴,
∴,
∴,.
设,则,,.
①当点与点重合时, 如图2,点恰好与点重合,过点作于点,
∵,
∴,,,
∴.
②当点与点重合时,如图3,过点作于点,
则,,
∴,
∴.
∵,
∴.
又∵,
∴,∴,
∴.
综上所述,的值为或.
科目:初中数学 来源: 题型:
【题目】如图,直线y=x﹣4与x轴、y轴分别交于A、B两点,抛物线y=x2+bx+c经过A、B两点,与x轴的另一个交点为C,连接BC.
(1)求抛物线的解析式及点C的坐标;
(2)点M在抛物线上,连接MB,当∠MBA+∠CBO=45°时,求点M的坐标;
(3)点P从点C出发,沿线段CA由C向A运动,同时点Q从点B出发,沿线段BC由B向C运动,P、Q的运动速度都是每秒1个单位长度,当Q点到达C点时,P、Q同时停止运动,试问在坐标平面内是否存在点D,使P、Q运动过程中的某一时刻,以C、D、P、Q为顶点的四边形为菱形?若存在,直接写出点D的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,AB<BC,点E为对角线AC上的一个动点,连接BE,DE,过E作EF⊥BC于F.设AE=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的( )
A.线段BEB.线段EFC.线段CED.线段DE
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明、小聪参加了跑的5期集训,每期集训结束市进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图:
根据图中信息,解答下列问题:
(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?
(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了解全校学生对电视节目的喜爱情况(新闻、体育、动画、娱乐、戏曲),从全校学生中随机抽取部分学生进行问卷调查,并把调查结果绘制成两幅不完整的统计图.
请根据以上信息,解答下列问题:
(1)这次被调查的学生共有多少人?
(2)请将条形统计图补充完整;
(3)若该校约有1500名学生,估计全校学生中喜欢娱乐节目的有多少人?
(4)该校广播站需要广播员,现决定从喜欢新闻节目的甲、乙、丙、丁四名同学中选取2名,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为增强学生环保意识,某中学举办了环保知识竞赛,某班共有5名学生(3名男生,2名女生)获奖.
(1)老师若从获奖的5名学生中选取一名作为班级的“环保小卫士”,则恰好是男生的概率为 .
(2)老师若从获奖的5名学生中任选两名作为班级的“环保小卫士”,请用画树状图法或列表法,求出恰好是一名男生、一名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着互联网、移动终端的迅速发展,数字化阅读越来越普及,公交、地铁上的“低头族”越来越多.某研究机构针对“您如何看待数字化阅读”问题进行了随机问卷调查(问卷调查表如下图所示),并将调查结果绘制成图1和图2所示的统计图(均不完整).请根据统计图中提供的信息,解答下列问题:
(1)本次接受调查的共有多少人?
(2)在接受调查的人当中,请求出选择“观点”的人数,并将条形统计图补充完整;
(3)在扇形统计图中,“观点”对应的圆心角为多少度?
(4)现在你是该研究机构的研究员,根据以上调查结果,你分别从选择“观点、观点、观点、观点的调查人员中,每项随机抽取1人,再从这4人中,任选2人进行个别座谈,请用列表法成树状图法求选取的两人恰好是选择“观点、观点”的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com