精英家教网 > 初中数学 > 题目详情

【题目】如图,已知等边△ABC和等边△BPE,点P在BC的延长线上,EC的延长线交AP于M,连BM.

(1)求证:AP=CE;

(2)求∠PME的度数;

(3)求证:BM平分∠AME;

(4)AM,BM,MC之间有怎样的数量关系,直接写出,不需证明.

【答案】(1)见解析;(2)60゜;(3) 见解析;(4)AM+MC=BM

【解析】

(1)先证△APB≌△CEB,即而可得AP=CE,

(2)在△MCPBCE中,由三角形的内角和为180°,可得∠PME=PBE=60゜

(3)分别过点BBNAMN,BFMEF,先证△BNP≌△BFE,可得BN=BF,由角平分线的判定可证BM平分∠AME.

(4)BM上截取BK=CM,连接AK.可得△ACM≌△ABK,则AK=AM,所以AM+MC=BM.

证明:(1)在△APB和△CEB

AB=BC,ABP=CBE,BP=BE,

∴△APB≌△CEB (SAS),

∴ AP=CE,

(2)∵△APB≌△CEB,

∴∠APB=CEB,

∵∠MCP=BCE,

则∠PME=PBE=60゜

(3)BNAMN,BFMEF,

∵△APB≌△CEB,

BP=BE,BPN=FEB,

BNPBFE

BNP=BFE

NPB=FEB

PB=EB

∴△BNP≌△BFE(AAS),

BN=BF,

又∵BNAMN,BFMEF,

BM平分∠AME,

(4)AM+BM=MC

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD与四边形AEFG是位似图形,且ACAF=2:3,则下列结论不正确的是(  )
A.四边形ABCD与四边形AEFG是相似图形
B.ADAE的比是2:3
C.四边形ABCD与四边形AEFG的周长比是2:3
D.四边形ABCD与四边形AEFG的面积比是4:9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠A=100°,BI、CI分别平分∠ABC,∠ACB,则∠BIC=________,若BM、CM分别平分∠ABC,∠ACB的外角平分线,则∠M=__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】顺次连接四边形各边中点所得的四边形是(  )
A.平行四边形
B.矩形
C.菱形
D.以上都不对

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平行四边形ABCD中,BC=4cmEAD的中点,FG分别为BECD的中点,则FG=(  )cm
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请回答下列问题:
(1)叙述三角形中位线定理,并运用平行四边形的知识证明;
(2)运用三角形中位线的知识解决如下问题:如图,在四边形ABCD中,ADBCEF分别是ABCD的中点,求证:EF= AD+BC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,B=C=65°BD=CEBE=CF,若A=50°,则DEF的度数是(  )

A.

B.

C.

D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为 的线段的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案