精英家教网 > 初中数学 > 题目详情

【题目】<α<90°,那么,以sinα、cosα、tanα·cotα为三边的ABC的内切圆半径与外接圆半径之和是(

A.2B.C.D.

【答案】C

【解析】

先根据三角形的三边关系判断出△ABC的形状,再根据切线长定理即可求出其内切圆的半径,由圆周角定理即可求出外接圆的半径.

解:∵tanαcotα=1=sin2α+cos2α,
∴△ABC是直角三角形,
如图所示,设△ABC内切圆的半径r,外接圆的半径为R

AD=AECE=CFBD=BF

易得四边形OECF为正方形,∴CE=CF=r

AB=AD+BD=AE+BF=AC-CE+BC-CF=sinα+cosα-2r=1
r=

∵∠ACB=90°,∴AB为△ABC外接圆的直径,
R=

r+R=

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两人驾车分别从AB两地相向而行,乙出发半小时后甲出发,甲出发1.5小时后汽车出现故障,于是甲停下修车,半小时后甲修好后继续沿原路按原速与乙相遇,相遇后甲随即调头以原速返回A地,乙也继续向A地行驶,甲、乙两车之间的距离(y/千米)与甲驾车时间x(小时)之间的关系如图所示,当乙到达A地时,甲距离B_____千米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在教室前面墙壁处安装了一个摄像头,当恰好观测到后面墙壁与底面交接处点时,摄像头俯角约为,受安装支架限制,摄像头观测的俯角最大约为,已知摄像头安装点高度约为米,摄像头与安装的墙壁之间距离忽略不计,

求教室的长(教室前后墙壁之间的距离的值)

若第一排桌子前边缘与前面墙壁的距离米, 桌子的高度米,那么第一排桌子是否在监控范围内?如果不在,应该怎样移动? (,精确到)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图象与y轴交于C(08),且与反比例函数y=(x0)的图象在第一象限内交于A(3a)B(1b)两点.

⑴求AOC的面积;

⑵若=4,求反比例函数和一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线y=﹣x+2x轴交于点B,与y轴交于点C,抛物线y-x2+bx+c经过BC两点,点P是抛物线上的一个动点,过点PPQx轴,垂足为Q,交直线y=﹣x+2于点D.设点P的横坐标为m

1)求该抛物线的函数表达式;

2)若以PDOC为顶点的四边形是平行四边形,求点Q的坐标;

3)如图2,当点P位于直线BC上方的抛物线上时,过点PPEBC于点E,求当PE取得最大值时点P的坐标,并求PE的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,BCADBCAD,点EAD的中点,点FAE的中点,ACCD,连接BECECF

1)判断四边形ABCE的形状,并说明理由;

2)如果AB4,∠D30°,点PBE上的动点,求PAF的周长的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AD=6,点E是边CD上的动点(点E不与端点C,D重合),AE的垂直平分线FG分别交AD,AE,BC于点F,H,G.当=时,DE的长为( )

A. 2 B. C. D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平行四边形ABCD中,对角线ACBD交于点OE是边AD上的一个动点(与点AD不重合),连接EO并延长,交BC于点F,连接BEDF.下列说法:

对于任意的点E,四边形BEDF都是平行四边形;

当∠ABC>90°时,至少存在一个点E,使得四边形BEDF是矩形;

AB<AD时,至少存在一个点E,使得是四边形BEDF是菱形;

当∠ADB=45°时,至少存在一个点E,使得是四边形BEDF是正方形.

所有正确说法的序号是:_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形以点为圆心,以任意长为半径作弧分别交两点,再分别以点为圆心,以大于的长为半径作弧交于点,作射线于点,若,则矩形的面积等于__________

查看答案和解析>>

同步练习册答案