精英家教网 > 初中数学 > 题目详情
19.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E时AD边的中点,点M时AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.
(1)求证:四边形AMDN是平行四边形.
(2)填空:①当AM的值为1时,四边形AMDN是矩形;
②当AM的值为2时,四边形AMDN是菱形.

分析 (1)根据菱形的性质可得ND∥AM,再根据两直线平行,内错角相等可得∠NDE=∠MAE,∠DNE=∠AME,根据中点的定义求出DE=AE,然后利用“角角边”证明△NDE和△MAE全等,根据全等三角形对应边相等得到ND=MA,然后利用一组对边平行且相等的四边形是平行四边形证明;
(2)①根据矩形的性质得到DM⊥AB,再求出∠ADM=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半,即可得出结果;
②根据菱形的性质得到AN=DN,证得△ADN为等边三角形,即可得出结果.

解答 (1)证明:∵四边形ABCD是菱形,
∴ND∥AM,
∴∠NDE=∠MAE,∠DNE=∠AME,
∵点E是AD中点,
∴DE=AE,
在△NDE和△MAE中,
$\left\{\begin{array}{l}{∠NDE=∠MAE}\\{∠DNE=∠AME}\\{DE=AE}\end{array}\right.$,
∴△NDE≌△MAE(AAS),
∴ND=MA,
∴四边形AMDN是平行四边形;
(2)①AM=1时,四边形AMDN是矩形;理由如下:
∵四边形ABCD是菱形,
∴AD=AB=2,
∵平行四边形AMDN是矩形,
∴DM⊥AB,
即∠DMA=90°,
∵∠DAB=60°,
∴∠ADM=30°,
∴AM=$\frac{1}{2}$AD=1;
②当AM=2时,四边形AMDN是菱形;理由如下:
∵四边形ABCD是菱形,
∴AD=AB=2,
∵平行四边形AMDN是菱形,
∴AN=DN,
∵∠DAB=60°,
∴∠ADN=60°,
∴△ADN为等边三角形,
∴AM=DN=AD=2.

点评 本题考查了菱形的性质、平行四边形的判定、全等三角形的判定与性质、矩形的性质、等边三角形的判定与性质等知识;熟练掌握三角形全等与证明等边三角形是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

9.如图摆放的两个正方形,各有一个顶点在反比例函数y=$\frac{4}{x}$的图象上,则图中小正方形(阴影部分)的边长等于(  )
A.$\sqrt{5}$-1B.$\sqrt{5}$-2C.1+$\sqrt{5}$D.4-$\sqrt{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,E是?ABCD内任一点,若S?ABCD=8,则阴影部分的面积是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.菱形ABCD的对角线AC、BD之比为3:4,其周长为40cm,则菱形ABCD的面积为96cm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=-$\frac{3}{16}a{x}^{2}$+$\frac{5}{8}ax$+3a(a≠0)与x轴交于点A和点B(点A在点B的左侧),与y轴的正半轴交于点C,且OB=OC.
(1)求a的值;
(2)点D为OB中点,点E为OC中点,点F在y轴的负半轴上,点G在线段FD的延长线上,连接GE、ED,若FD=DG,且S△GED=$\frac{27}{2}$,求点G的坐标;
(3)在(2)的条件下,点P在线段OB上,点Q在线段OC的延长线上,且CQ=BP.连接PQ和BC交于点M,连接GM并延长GM交抛物线于点N,连接QN、GP和GB,若∠QPG-∠NQO=∠NQP-∠PGB时,求线段NQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.$\sqrt{\frac{16}{81}}$的平方根是±$\frac{2}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,矩形ABCD中,M为CD中点,分别以B、M为圆心,以BC长、MC长为半径画弧,两弧相交于点P,若∠PBC=70°,则∠MPC的度数为(  )
A.55°B.40°C.35°D.20°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.在$\frac{\sqrt{2}}{2}$,0.2,$\frac{22}{7}$,$\sqrt{\frac{4}{9}}$,0,π,4.$\stackrel{•}{2}$$\stackrel{•}{1}$,-$\root{3}{8}$,2.020020002…(相邻两个2之间依次多一个0)中,无理数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.问题情境:如图将边长为8cm的正方形纸片ABCD折叠,使点B恰好落在AD边的中点F处,折痕EG分别交AB、CD于点E、G,FN与DC交于点M,连接BF交EG于点P.
独立思考:
(1)AE=3cm,△FDM的周长为16cm;
(2)猜想EG与BF之间的位置关系与数量关系,并证明你的结论.
拓展延伸:
如图2,若点F不是AD的中点,且不与点A、D重合:
①△FDM的周长是否发生变化,并证明你的结论.
②判断(2)中的结论是否仍然成立,若不成立请直接写出新的结论(不需证明).

查看答案和解析>>

同步练习册答案