【题目】如图①,已知抛物线y=ax2﹣4amx+3am2(a、m为参数,且a>0,m>0)与x轴交于A、B两点(A在B的左边),与y轴交于点C.
(1)求点B的坐标(结果可以含参数m);
(2)连接CA、CB,若C(0,3m),求tan∠ACB的值;
(3)如图②,在(2)的条件下,抛物线的对称轴为直线l:x=2,点P是抛物线上的一个动点,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的的等腰直角三角形.若存在,求出所有符合条件的点P的坐标,若不存在,请说明理由.
【答案】(1)B(3m,0);(2)tan∠ACB=;
(3)点P的坐标是:()或()或()或().
【解析】
(1)令y=0,解方程ax2﹣4amx+3am2=0,即可求出点B的坐标;
(2)过点A作AD⊥BC,垂足为点D,可得△BOC为等腰直角三角形,求出AD,CD,则tan∠ACB的值为;
(3)求出抛物线的解析式,分不同的情况:①当P在对称轴的左边,如图3,过P作MN⊥y轴,交y轴于M,交l于N,证明△OMP≌△PNF,根据|OM|=|PN|,列方程可得点P的坐标;同理可得其他图形中点P的坐标,②当P在对称轴的左边,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,则可求出点P的坐标.
解:(1)令y=0,则有ax2﹣4amx+3am2=0,
解得:x1=m,x2=3m,
∵m>0,A在B的左边,
∴B(3m,0);
(2)如图1,过点A作AD⊥BC,垂足为点D,
由(1)可知B(3m,0),则△BOC为等腰直角三角形,
∵OC=OB=3m,
∴BC=3m,
又∵∠ABC=45°,
∴∠DAB=45°,
∴AD=BD,
∵AB=2m,
∴m,CD=2m,
∴tan∠ACB=;
(3)∵由题意知x=2为对称轴,
∴2m=2,
即m=1,
∵在(2)的条件下有(0,3m),
∴3m=3am2,
解得m=,即a=1,
∴抛物线的解析式为y=x2﹣4x+3,
①当P在对称轴的左边,如图2,过P作MN⊥y轴,交y轴于M,交l于N,
∵△OPF是等腰直角三角形,且OP=PF,
易得△OMP≌△PNF,
∴OM=PN,
∵P(m,m2﹣4m+3),
则﹣m2+4m﹣3=2﹣m,
解得:m=或,
∴P的坐标为(,)或();
②当P在对称轴的右边,
如图3,过P作MN⊥x轴于N,过F作FM⊥MN于M,
同理得△ONP≌△PMF,
∴PN=FM,
则﹣m2+4m﹣3=m﹣2,
解得:x=或;
P的坐标为()或();
综上所述,点P的坐标是:()或()或()或().
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y=(k≠0,x>0)的图象与矩形OABC的边AB、BC分别交于点E、F,E(,6),且E为BC的中点,D为x轴负半轴上的点.
(1)求反比倒函数的表达式和点F的坐标;
(2)若D(﹣,0),连接DE、DF、EF,则△DEF的面积是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax+bx+c的图象如图所示,下列结论:①abc>0;②b<a+c;③4a+2b+c>0;④a+b+c>m(am+b)+c(m≠1的实数),其中正确的结论有 ( )
A.个B.个C.个D.个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,D为AC中点,E为AB上的动点,将ED绕点D逆时针旋转90°得到FD,连CF,则线段CF的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=x+4交x轴于点A,交y轴于点B,抛物线y=﹣x2+bx+c经过点A、B.
(1)求抛物线解析式;
(2)点C(m,0)是x轴上异于A、O点的一点,过点C作x轴的垂线交AB于点D,交抛物线于点E.
①当点E在直线AB上方的抛物线上时,连接AE、BE,求S△ABE的最大值;
②当DE=AD时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,的三个顶点坐标分别为.
(1)画出关于轴对称的;
(2)以点为位似中心,在如图所示的网格中画出的位似图形,使与 的相似比为;
(3)点的坐标是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).
(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;
(2)写出点A′,B′,C′的坐标:
A′ ,B′ ,C′ ;
(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的口袋里装有若干个除颜色外其余均相同的红、黄、蓝三种颜色的小球,其中红球2个,篮球1个,若从中任意摸出一个球,摸到球是红球的概率为.
(1)求袋中黄球的个数;
(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,求两次摸到球的颜色是红色与黄色这种组合(不考虑红、黄球顺序)的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先阅读下列材料,然后解答问题.
材料:从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线例如:如图①,AD把△ABC分成△ABD与△ADC,若△ABD是等腰三角形,且△ADC∽△BAC,那么AD就是△ABC的完美分割线.
解答下列问题:
(1)如图②,在△ABC中,∠B=40°,AD是△ABC的完美分割线,且△ABD是以AD为底边的等腰三角形,则∠CAD= 度.
(2)在△ABC中,∠B=42°,AD是△ABC的完美分割线,且△ABD是等腰三角形,求∠BAC的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com