如图,M为等边△ABC内部的一点,且MA=8,MB=10,MC=6,将△BMC绕点C顺时针旋转得到△ANC.下列说法中:①MC=NC;②AM=AN;③S四边形AMCN=S△ABC﹣S△ABM;④∠AMC=120°.正确的有__________.(请填上番号)
![]()
①③
【考点】全等三角形的判定与性质;等边三角形的性质.
【分析】根据旋转的性质得到CM=CN,BM=AN,故①正确,②错误;△BCM≌△ACN,于是得到S△BCM=S△ACN,求得S四边形AMCN=S△ACM+S△ACN=S△ABC﹣S△ABM;故③正确;连接MN,根据等边三角形的性质得到∠ACB=60°,推出△CMN是等边三角形,根据等边三角形的性质得到∠CMN=60°,MN=CM=6,根据勾股定理的逆定理得到∠AMN=90°,求得∠AMC=150°,故④错误.
【解答】解:∵△BMC绕点C顺时针旋转得到△ANC,
∴CM=CN,BM=AN,故①正确,②错误;
△BCM≌△ACN,
∴S△BCM=S△ACN,
∴S四边形AMCN=S△ACM+S△ACN=S△ABC﹣S△ABM;故③正确;
连接MN,∵△ABC是等边三角形,
∴∠ACB=60°,
∵∠ACN=∠BCM,
∴∠MCN=60°,
∴△CMN是等边三角形,
∴∠CMN=60°,MN=CM=6,
在△AMN中,∵AM2+MN2=82+62=102=AN2,
∴∠AMN=90°,
∴∠AMC=150°,故④错误,
故答案为:①③.
![]()
【点评】本题考查了全等三角形的性质,旋转的性质,等边三角形的性质,勾股定理的逆定理,连接MN构造等边三角形是解题的关键.
科目:初中数学 来源: 题型:
一个射手连续射靶22次,其中三次射中10环,7次射中9环,9次射中8环,3次射中7环,则射中环数的中位数和众数分别为
A.8,9 B.8,8 C.8.5,8 D.8.5,9
查看答案和解析>>
科目:初中数学 来源: 题型:
如果a、b是两个不相等的实数,且满足a2﹣a=2,b2﹣b=2,那么代数式2a2+ab+2b﹣2015的值为( )
A.2011 B.﹣2011 C.2015 D.﹣2015
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com