【题目】如图,在平面直角坐标系中,点P(3,4),连接OP,将线段OP绕点O逆时针旋转90°得线段OP1.
(1)在图中作出线段OP1,并写出P1点的坐标;
(2)求点P在旋转过程中所绕过的路径长;
(3)求线段OP在旋转过程中所扫过的图形的面积.
科目:初中数学 来源: 题型:
【题目】已知:在梯形中,,,,点在对角线上(不与点重合),,的延长线与射线交于点,设的长为.
(1)如图,当时,求的长;
(2)设的长为,求关于的函数解析式,并直接写出定义域;
(3)当是等腰三角形时,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c交x轴于A(-1,0),B(3,0),交y轴的负半轴于C,顶点为D.下列结论:①a-b+c=0;②2c<3b;③当m≠1时,a+b<am2+bm;④当△ABD是等腰直角三角形时,a=;其中正确的有( )
A.①②③B.①②④C.②③④D.①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转.如图2,从侧面看,踏板静止DE上的线段AB重合,测得BE长为0.21m,当踏板连杆绕着A旋转到AC处时,测得∠CAB=42°,点C到地面的距离CF长为0.52m,当踏板连杆绕着点A旋转到AG处∠GAB=30°时,求点G距离地面的高度GH的长.(精确到0.1m,参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线经过点、和,垂直于轴,交抛物线于点,垂直于轴,垂足为,直线是该抛物线的对称轴,点是抛物线的顶点.
(1)求出该二次函数的表达式及点的坐标;
(2)若沿轴向右平移,使其直角边与对称轴重合,再沿对称轴向上平移到点与点重合,得到,求此时与矩形重叠部分图形的面积;
(3)若沿轴向右平移个单位长度()得到,与重叠部分图形的面积记为,求与之间的函数表达式,并写出自变量的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有七张正面分别标有数字﹣3,﹣2,﹣1,0,1,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,0)的概率是( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com