精英家教网 > 初中数学 > 题目详情

【题目】如图,已知一次函数与反比例函数的图象交于点A(﹣4,﹣2)和B(a,4).
(1)求反比例函数的解析式和点B的坐标;
(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数的值?

【答案】
(1)解:设反比例函数的解析式为y= (k≠0),

∵反比例函数图象经过点A(﹣4,﹣2),

∴﹣2=

∴k=8,

∴反比例函数的解析式为y=

∵B(a,4)在y= 的图象上,

∴4=

∴a=2,

∴点B的坐标为B(2,4)


(2)解:根据图象得,当x>2或﹣4<x<0时,一次函数的值大于反比例函数的值
【解析】(1)设反比例函数解析式为y= ,把点A的坐标代入解析式,利用待定系数法求反比例函数解析式即可,把点B的坐标代入反比例函数解析式进行计算求出a的值,从而得到点B的坐标;(2)写出一次函数图象在反比例函数图象上方的x的取值范围即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,线段AB和射线BM交于点B

1)利用尺规完成以下作图,并保留作图痕迹(不写作法)

①在射线BM上作一点C,使AC=AB

②作∠ABM 的角平分线交ACD点;

③在射线CM上作一点E,使CE=CD,连接DE.

2)在(1)所作的图形中,猜想线段BDDE的数量关系,并证明之.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程:

(1)2(100.5y)=﹣(1.5y+2)

(2)(x5)3(x5)

(3)1

(4)x(x9)[x+(x9)]

(5) -=0.5x+2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的顶点坐标分别为A(1,1),B(2,3),C(3,0).(1)画出△ABC绕点O逆时针旋转90°后得到的△DEF;

(2)以点O为位似中心,在第三象限内把△ABC按相似比2:1放大(即所画△PQR△ABC的相似比为2:1).

(3)(2)的条件下,若M(a,b)△ABC边上的任意一点,则△PQR的边上与点M对应的点M′的坐标为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.
(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是
(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率是(用树状图或列表法求解).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2
(1)求实数m的取值范围;
(2)当x12﹣x22=0时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:已知Q、K、R为数轴上三点,若点K到点Q的距离是点K到点R的距离的2倍,我们就称点K是有序点对[Q,R]的好点

根据下列题意解答问题:

(1)如图1,数轴上点Q表示的数为1,点P表示的数为0,K表示的数为1,点R

表示的数为2.因为点K到点Q的距离是2,点K到点R的距离是1,所以点K

有序点对的好点但点K不是有序点对的好点.同理可以判断:

P__________有序点对的好点,点R______________有序点对的好点(填不是”);

(2)如图2,数轴上点M表示的数为-1,点N表示的数为5,若点X是有序点对的好点,求点X所表示的数,并说明理由?

(3)如图3,数轴上点A表示的数为20,点B表示的数为10.现有一只电子蚂蚁C

B出发,以每秒2个单位的速度向左运动t当点A、B、C中恰有一个点为其余两有序点对的好点,求t的所有可能的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某星期天下午,小强和小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程(公里)和所用时间(分钟)之间的函数关系.下列说法中错误的是( )

A. 小强从家到公共汽车站步行了2公里 B. 小强在公共汽车站等小明用了10分钟

C. 小强乘公共汽车用了20分钟 D. 公共汽车的平均速度是30公里/小时

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,矩形的对角线

(1)求点的坐标;

(2)把矩形沿直线对折,使点落在点处,折痕分别与相交于点,求直线的解析式;

(3)若点在直线上,平面内是否存在点,使以为顶点的四边形是菱形?若存在,请直接写出点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案