【题目】甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了30分钟;③乙用12分钟追上甲;④乙到达终点时,甲离终点还有360米;其中正确的结论有( )
A.1个B.2个C.3个D.4个
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠C=90°,AD⊥DB,点E为AB的中点,DE∥BC.
(1)求证:BD平分∠ABC;
(2)连接EC,若∠A=30°,DC=,求EC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是( )
A. b2﹣c2=a2B. a:b:c=3:4:5
C. ∠A:∠B:∠C=9:12:15D. ∠C=∠A﹣∠B
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线 :y=ax2 过点(2,2)
(1)直接写出抛物线的解析式;
(2)如图,△ABC 的三个顶点都在抛物线 上,且边 AC 所在的直线解析式为y=x+b,若 AC 边上的中线 BD 平行于 y 轴,求的值;
(3)如图,点 P 的坐标为(0,2),点 Q 为抛物线上 上一动点,以 PQ 为直径作⊙M,直线 y=t 与⊙M 相交于 H、K 两点是否存在实数 t,使得 HK 的长度为定值?若存在,求出 HK 的长度;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线过点A(4,0),B(﹣2,0),C(0,﹣4).
(1)求抛物线的解析式;
(2)如图,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+3x+c经过A(﹣1,0),B(4,0)两点,与y轴交于点C.
(1)求抛物线的解析式;
(2)若点P在第一象限的抛物线上,且点P的横坐标为t,过点P向x轴作垂线交直线BC于点Q,设线段PQ的长为m,求m与t之间的函数关系式,并求出m的最大值;
(3)在x轴上是否存在点E,使以点B,C,E为顶点的三角形为等腰三角形?如果存在,直接写出E点坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小明设计的“过三角形的一个顶点作该顶点对边的平行线”的尺规作图过程.
已知:如图1,△ABC.
求作:直线AD,使AD∥BC.
作法:如图2:
①分别以点A、C为圆心,以大于AC为半径作弧,两弧交于点E、F;
②作直线EF,交AC于点O;
③作射线BO,在射线BO上截取OD(B与D不重合),使得OD = OB;
④作直线AD.
∴ 直线AD就是所求作的平行线.
根据小明设计的尺规作图过程,完成下面的证明.
证明:连接CD.
∵OA =OC,OB=OD,
∴四边形ABCD是平行四边形(_______________________)(填推理依据).
∴AD∥BC(__________________________________)(填推理依据).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分10分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.
(1)求每张门票原定的票价;
(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com