【题目】如图,已知直线与轴,轴分别交于点,抛物线的顶点是,且与轴交于两点,与轴交于点是抛物线上一个动点,过点作于点.
求二次函数的解析式;
当点运动到何处时,线段PG的长取最小值?最小值为多少?
若点是抛物线对称轴上任意点,点是抛物线上一动点,是否存在点使得以点为顶点的四边形是菱形?若存在,请你直接写出点的坐标;若不存在,请你说明理由.
【答案】(1); (2)点的坐标为 ,最小值为;(3)点的坐标为或
【解析】
(1)根据顶点式直接写出二次函数的解析式,整理可得二次函数的一般式;
(2) 过点作轴交于点,即可通过三角函数关系式把求线段PG的长取最小值转化为求线段PH的最小值即可得到答案;
(3)分CD为菱形的边和对角线两种情况讨论即可;
解:由题意,可得抛物线为
整理得:
故二次函数的解析式为
把代入得
点的坐标为.
把代入
得
点的坐标为.
如图过点作轴交于点
则有,
(两直线平行,同位角相等)
设点的横坐标为
则,,
,
,
当时,有最小值,最小值为,
此时有最小值,
当时,
此时点的坐标为
符合条件的点的坐标为或,
求解如下:
由题意知,抛物线的对称轴为,
把代入,
得或,
,
.
I.如图当以为菱形的边时,平行且等于
若点在对称轴右侧,
,
,
把代入,得,
点的坐标为.
四边形为菱形,
即符合题意,
同理可知,当的坐标为时,四边形也为菱形.
II.如图当为菱形的对角线时,
根据菱形的对角线互相垂直平分,可得对称轴垂直平分
所以在对称轴上.
又因为点在抛物线上,
所以点为抛物线的顶点,
所以点的坐标为.
综上所述,符合条件的点的坐标为或
科目:初中数学 来源: 题型:
【题目】图①、图②、图③都是的网格,每个小正方形的顶点称为格点.顶点、、均在格点上,在图①、图②、图③给定网格中按要求作图,并保留作图痕迹.
(1)在图①中画出中边上的中线;
(2)在图②中确定一点,使得点在边上,且满足;
(3)在图③中画出,使得与是位似图形,且点为位似中心,点、分别在、边上,位似比为.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在正方形ABCD中,E,F分别为BC,CD的中点,连接AE,BF,交点为G.若正方形的边长为2.
(1)求证:AE⊥BF;
(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP交BA的延长线于点Q,求AQ的长;
(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,求四边形MNGH的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:
(1)补全条形统计图,补全扇形统计图中乐器所占的百分比;
(2)本次调查学生选修课程的“众数”是__________;
(3)若该校有1200名学生,请估计选修绘画的学生大约有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AC、BD为对角线,AB=2,把BD绕点B逆时针旋转,得到线段BE,当点E落在线段BA的延长线时,恰有DE∥AC,连接CE,则阴影部分的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是( )m.
A.20B.30C.30D.40
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为( )
A. (,)B. (2,)C. (,)D. (,3﹣)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】Rt△ABC中,∠ACB=90°,AC=3,BC=7,点P是边AC上不与点A、C重合的一点,作PD∥BC交AB边于点D.
(1)如图1,将△APD沿直线AB翻折,得到△AP'D,作AE∥PD.求证:AE=ED;
(2)将△APD绕点A顺时针旋转,得到△AP'D',点P、D的对应点分别为点P'、D',
①如图2,当点D'在△ABC内部时,连接P′C和D'B,求证:△AP'C∽△AD'B;
②如果AP:PC=5:1,连接DD',且DD'=AD,那么请直接写出点D'到直线BC的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com