精英家教网 > 初中数学 > 题目详情
已知线段AB=4,点C是其黄金分割点,且AC>BC,则AC-BC=
 
考点:黄金分割
专题:计算题
分析:根据黄金分割的定义得到AC=
5
-1
2
AB=2
5
-2,再计算BC的长,然后计算AC-BC.
解答:解:∵点C是其黄金分割点,且AC>BC,
∴AC=
5
-1
2
AB=
5
-1
2
×4=2
5
-2
BC=AB-AC=4-(2
5
-2)=6-2
5

∴AC-BC=2
5
-2-(6-2
5
)=4
5
-8.
故答案为4
5
-8.
点评:本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=
5
-1
2
AB≈0.618AB,并且线段AB的黄金分割点有两个.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

△ABC和△A′B′C′是位似图形,且面积之比为4:1,则△ABC和△A′B′C′的对应边AB和A′B′的比为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

把一张长方形纸片(长方形ABCD)按如图所示方式折叠,折痕为AE,使点D落在BC边的点F处,若AB=8cm,BC=10cm,则重叠部分△AEF的面积是
 
 cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB∥CD,AC∥BD,AD与BC交于O,AE⊥BC于E,DF⊥BC于F,那么图中全等的三角形有
 
对.

查看答案和解析>>

科目:初中数学 来源: 题型:

化简:-|-3|=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,抛物线y=ax2+bx+4与y轴交于A点,与x轴交于B、C两点,∠ABO=∠OAC,BC=6,求抛物线解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

下列命题中,真命题的个数是(  )
①平分弦的直径垂直于弦;②圆内接平行四边形必为矩形;③圆内接四边形ABCD的四个内角之比可以是∠A:∠B:∠C:∠D=1:2:3:4;④不在同一条直线上的三个点确定一个圆.
A、4B、3C、2D、1

查看答案和解析>>

科目:初中数学 来源: 题型:

cos60°=(  )
A、
3
B、
3
2
C、
3
3
D、
1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

观察一列数:-
1
2
2
5
-
3
10
4
17
-
5
26
6
37
…根据规律,请你写出第10个数是
 

查看答案和解析>>

同步练习册答案