·ÖÎö £¨1£©¸ù¾Ý¹´¹É¶¨Àí£¬¿ÉµÃAµã×ø±ê£¬¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃº¯Êý½âÎöʽ£»
£¨2£©¸ù¾Ý×Ô±äÁ¿Ó뺯ÊýÖµµÄ¶ÔÓ¦¹ØÏµ£¬¿ÉµÃPµã×ø±ê£¬Eµã×ø±ê£¬¸ù¾ÝÏ߶εĺͲ¿ÉµÃPEµÄ³¤£¬Aµ½PEµÄ¾àÀ룬Bµ½PEµÄ¾àÀ룬¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½£¬¿ÉµÃ´ð°¸£»¸ù¾Ý¶¥µã×ø±ê£¬¿ÉµÃmµÄÖµ£¬¿ÉµÃPµã×ø±ê£»
£¨3£©¸ù¾ÝµÈÑüÈý½ÇÐΣ¬¿ÉµÃ¹ØÓÚaµÄ·½³Ì£¬¸ù¾Ý½â·½³Ì£¬¿ÉµÃaµÄÖµ£¬ÔÙ¸ù¾Ý×Ô±äÁ¿Ó뺯ÊýÖµµÄ¶ÔÓ¦¹ØÏµ£¬¿ÉµÃDµã×ø±ê£®
½â´ð ½â£º£¨1£©ÉèA£¨a£¬0£©£¬Óɹ´¹É¶¨Àí£¬µÃ
£¨a-2£©2+42+22+42=a2£¬
½âµÃa=10£¬¼´A£¨10£¬0£©£¬
ÉèÅ×ÎïÏߵĽâÎöʽΪy=ax2+bx£¬
½«A¡¢Bµã×ø±ê£¬µÃ
$\left\{\begin{array}{l}{100a+10b=0}\\{4a+2b=4}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=-\frac{1}{4}}\\{b=\frac{5}{2}}\end{array}\right.$£¬
Å×ÎïÏߵĽâÎöʽΪy=-$\frac{1}{4}$x2+$\frac{5}{2}$x£»
£¨2£©Èçͼ£º![]()
×÷PC¡ÍxÖáÓÚCµã£¬½»ABÓëE£¬
ABµÄ½âÎöʽΪy=-$\frac{1}{2}$x+5£¬
ÉèP£¨m£¬-$\frac{1}{4}$m2+$\frac{5}{2}$m£©£¬E£¨m£¬-$\frac{1}{2}$m+5£©£®
PE=yP-yE=-$\frac{1}{4}$m2+3m-5£¬
S=$\frac{1}{2}$PE•£¨xA-xE£©+$\frac{1}{2}$PE£¨xE-xB£©=$\frac{1}{2}$¡Á£¨-$\frac{1}{4}$m2+3m-5£©¡Á£¨10-2£©£¬
»¯¼ò£¬µÃ
S=-m2+12m-20£¬µ±m=6ʱ£¬S×î´ó=16£¬
µ±SÈ¡µÃ×î´óֵʱµãPµÄ×ø±êΪ£¨6£¬6£©£»
£¨3£©QµãµÄ×ø±êΪ£¨5£¬$\frac{5}{2}$£©£¬DµãÔÚ¹ýOµãÇÒÆ½ÐÐABµÄÖ±ÏßÉÏy=-$\frac{1}{2}$xÉÏ£¬ÉèD£¨a£¬-$\frac{1}{2}$a£©£®
AD2=£¨10-a£©2+$\frac{1}{4}$a2£¬AQ2=25+$\frac{25}{4}$=$\frac{125}{4}$£¬QD2=£¨a-5£©2+£¨-$\frac{1}{2}$a-$\frac{5}{2}$£©2£®
¢Ùµ±AD=AQʱ£¬£¨10-a£©2+$\frac{1}{4}$a2=$\frac{125}{4}$£¬½âµÃa1=11£¬a2=5£¬
µ±a=11ʱ£¬-$\frac{1}{2}$a=-$\frac{11}{2}$£¬¼´D1£¨11£¬-$\frac{11}{2}$£©£»µ±a=5ʱ£¬-$\frac{1}{2}$a=-$\frac{5}{2}$£¬¼´D2£¨5£¬-$\frac{5}{2}$£©£»
¢Úµ±AD=QDʱ£¬£¨10-a£©2+$\frac{1}{4}$a2=£¨a-5£©2+£¨-$\frac{1}{2}$a-$\frac{5}{2}$£©2£¬
½âµÃa=$\frac{11}{2}$£¬-$\frac{1}{2}$a=-$\frac{11}{4}$£¬¼´D4£¨$\frac{11}{2}$£¬-$\frac{11}{4}$£©
¢Ûµ±AQ=QDʱ£¬£¨a-5£©2+£¨-$\frac{1}{2}$a-$\frac{5}{2}$£©2=$\frac{125}{4}$£¬½âµÃa=6£¬-$\frac{1}{2}$a=-3£¬¼´D3£¨6£¬-3£©£¬
×ÛÉÏËùÊö£ºÒÔA£¬D£¬QΪ¶¥µãµÄÈý½ÇÐÎÄܳÉΪµÈÑüÈý½ÇÐΣ¬DµãµÄ×ø±êΪD3£¨6£¬-3£©£¬D2£¨5£¬-$\frac{5}{2}$£©£¬D1£¨11£¬-$\frac{11}{2}$£©£¬D4£¨$\frac{11}{2}$£¬-$\frac{11}{4}$£©£®
µãÆÀ ±¾Ì⿼²éÁËÁ˶þ´Îº¯Êý×ÛºÏÌ⣬ÀûÓù´¹É¶¨ÀíµÃ³öAµã×ø±êÊǽâÌâ¹Ø¼ü£¬ÓÖÀûÓÃÁË´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£»ÁËÓÃ×Ô±äÁ¿Ó뺯ÊýÖµµÄ¶ÔÓ¦¹ØÏµµÃ³öP£¬Eµã×ø±ê£¬ÀûÓÃÏ߶εĺͲîµÃ³öPEµÄ³¤£¬Aµ½PEµÄ¾àÀ룬Bµ½PEµÄ¾àÀëÊǽâÌâ¹Ø¼ü£¬ÓÖÀûÓÃÁ˶þ´Îº¯ÊýµÄÐÔÖÊ£»ÀûÓõÈÑüÈý½ÇÐε͍ÒåµÃ³ö¹ØÓÚaµÄ·½³ÌÊǽâÌâ¹Ø¼ü£¬Òª·ÖÀàÌÖÂÛ£¬ÒÔ·ÀÒÅ©£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 3¸ö | B£® | 4¸ö | C£® | 5¸ö | D£® | 6¸ö |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{a+b}{ab}$=$\frac{1+b}{b}$ | B£® | $\frac{x-y}{x+y}$=$\frac{{x}^{2}-{y}^{2}}{£¨x+y£©^{2}}$ | ||
| C£® | $\frac{x-3}{{x}^{2}-9}$=$\frac{1}{x-3}$ | D£® | $\frac{-x+y}{2}$=-$\frac{x+y}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2 | B£® | 10 | C£® | -2 | D£® | -10 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 2 4 | B£® | 4 5 9 | C£® | 4 6 8 | D£® | 5 5 11 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 4cm | B£® | 1cm | C£® | 9cm | D£® | 5cm |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com