【题目】定义:若存在实数对坐标(x,y)同时满足一次函数y=px+q和反比例函数y=,则二次函数y=px2+qxk为一次函数和反比例函数的“联姻”函数.
(1)试判断(需要写出判断过程):一次函数y=x+3和反比例函数y=是否存在“联姻”函数,若存在,写出它们的“联姻”函数和实数对坐标.
(2)已知:整数m,n,t满足条件t<n<8m,并且一次函数y=(1+n)x+2m+2与反比例函数y=存在“联姻”函数y=(m+t)x2+(10mt)x2015,求m的值.
(3)若同时存在两组实数对坐标[x1,y1]和[x2,y2]使一次函数y=ax+2b和反比例函数y=为“联姻”函数,其中,实数a>b>c,a+b+c=0,设,求L的取值范围.
【答案】(1)存在,实数对坐标为(1,2),(2,1);(2) m=2;(3) <L<2.
【解析】
(1)只需将y=x+3与y=组成方程组,并求出该方程组的解即可解决问题;
(2)根据题意得,解得.然后根据t<n<8m求出n的取值范围,进而求出m的取值范围,就可求出整数m的值;
(3)由a>b>c,a+b+c=0可得a>0,c<0,a>ac,ac>c,即可得到(2b)24ac>0,2<<12,由题可得x1+x2=2ba,x1x2=,从而得到
===2,利用二次函数的增减性并结合2<<即可得到L的取值范围.
(1)联立,
解得或.
则一次函数y=x+3和反比例函数y=存在“联姻”函数,它们的“联姻”函数为y=x2+3x2,实数对坐标为(1,2),(2,1);
(2)根据题意得:,
解得.
∵t<n<8m,
∴
解得6<n<24,
∴9<n+3<27,
∴1< <3,
∴1<m<3.
span>∵m是整数,
∴m=2;
(3)∵a>b>c,a+b+c=0,
∴a>0,c<0,a>ac,ac>c,
∴(2b)24ac>0,2<<
∴方程ax2+2bx+c=0有两个不相等的实根.
由题可得:x1、x2是方程ax+2b=cx即ax2+2bx+c=0的两个不等实根.
∴x1+x2=,x1x2=,
∴L= L=|x1x2|=
=
==
=
=,
∵2<<,
∴<L<2.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,CA=12cm,BC=12cm;动点P从点C开始沿CA以2cm/s的速度向点A移动,动点Q从点A开始沿AB以4cm/s的速度向点B移动,动点R从点B开始沿BC以 2cm/s的速度向点C移动.如果P、Q、R分别从C、A、B同时移动,移动时间为t(0<t<6)s.
(1)∠CAB的度数是 ;
(2)以CB为直径的⊙O与AB交于点M,当t为何值时,PM与⊙O相切?
(3)写出△PQR的面积S随动点移动时间t的函数关系式,并求S的最小值及相应的t值;
(4)是否存在△APQ为等腰三角形?若存在,求出相应的t值;若不存在请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在 Rt△ABC 中,∠C=90°,以 BC 为直径的⊙O 交 AB 于点 D,过点 D 作∠ADE=∠A,交 AC 于点 E.
(1)求证:DE 是⊙O 的切线;
(2)若 ,BC=15cm,求 DE 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线 y x2 bx c 的图象与 x 轴交于 A1, 0 、 B 4, 0 两点, 与 y 轴交于点C ,抛物线的对称轴与 x 轴交于点 D ,点 M 从O 点出发,以每秒 1 个单位长度的速度向 B 点运动(运动到 B 点停止),过点 M 作 x 轴的垂线,交抛物线于点 P ,交 BC 与点Q .
(1)求抛物线的解析式;
(2)设当点 M 运动了t (秒)时,四边形OBPC 的面积为 S ,求 S 与t 的函数关系式,并指出自变量t 的取值范围;
(3)在线段 BC 上是否存在点Q ,使得DBQ 成为等腰三角形?若存在,求出点Q 的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c=0无实数根;③a-b+c≥0;④的最小值为3,其中正确结论的个数是( )
A.1 个B.2 个C.3 个D.4 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若两个二次函数图象的顶点,开口方向都相同,则称这两个二次函数为“同簇二次函数”.
(1)请写出两个为“同簇二次函数”的函数;
(2)已知关于x的二次函数y1=2x2-4mx+2m2+1和y2=ax2+bx+2m2+5,其中y1的图象经过点A(1,1),y3=y1+y2,若y3与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知x1,x2是关于x的一元二次方程4kx2﹣4kx+k+1=0的两个实数根.
(1)是否存在实数k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,说明理由;
(2)求使﹣2的值为整数的实数k的整数值;
(3)若k=﹣2,λ=,试求λ的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.
(1) 求P点坐标及a的值;
(2)如图(1),
抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;
(3) 如图(2),
点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com