精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,∠ABC的角平分线BEAD交于点E,∠BED的角平分线EFDC交于点F,若AB=8DF=3FC,则BC=__________.

【答案】6+2.

【解析】

先延长EFBC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC得出比例式,DF=3FC计算得出CGDE的倍数关系,并根据BG=BC+CG进行计算即可.

解:延长EFBC,交于点G

∵矩形ABCD中,∠B的角平分线BEAD交于;

∴∠ABE=AEB=45°,

AB=AE=8

∴直角三角形ABE中,BE=8

又∵∠BED的角平分线EFDC交于点F

∴∠BEG=DEF

ADBC

∴∠G=DEF

∴∠BEG=G

BG=BE=8

∵∠G=DEF,∠EFD=GFC

∴△EFD∽△GFC

DF=3FC

CG=xDE=3x,则AD=8+3x=BC

BG=BC+CG

8=8+3x+x

解得x=2-2,

BC=8+3(2-2)=6+2,

故答案为:6+2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°BD平分∠ABC.求作⊙O,使得点O在边AB上,且⊙O经过BD两点;并证明AC与⊙O相切.(尺规作图,保留作图痕迹,不写作法)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系x0y中,对于图形G,若存在一个正方形γ,这个正方形的某条边与x轴垂直,且图形G上的所有的点都在该正方形的内部或者边上,则称该正方形γ为图形G的一个正覆盖.很显然,如果图形G存在一个正覆盖,则它的正覆盖有无数个,我们将图形G的所有正覆盖中边长最小的一个,称为它的紧覆盖.如图所示,图形G为三条线段和一个圆弧组成的封闭图形,图中的三个正方形均为图形G的正覆盖,其中正方形ABCD就是图形G的紧覆盖.

(1)对于半径为2的⊙0,它的紧覆盖的边长为 .

(2)如图1,点P为直线y=-2x+3上一动点,若线段OP的紧覆盖的边长为2,求点P的坐标;

(3)如图2,直线y=3x+3与x轴,y轴分别交于A,B,

①以0为圆心,r为半径的⊙0与线段AB有公共点,且由⊙0与线段AB组成的图形G的紧覆盖的边长小于4,直接写出r的取值范围;

②若在抛物线y=ax2+2ax-2(a≠0)上存在点C,使得△ABC的紧覆盖的边长为3,直接写出a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形的边长是,动点同时从点出发,以的速度分别沿运动,设运动时间为,四边形的面积为,则的函数关系图象大致为(

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtFHG中,H=90°FHx轴,,则称RtFHG为准黄金直角三角形(GF的右上方).已知二次函数的图像与x轴交于AB两点,与y轴交于点E0),顶点为C1),点D为二次函数图像的顶点.

1)求二次函数y1的函数关系式;

2)若准黄金直角三角形的顶点F与点A重合、G落在二次函数y1的图像上,求点G的坐标及FHG的面积;

3)设一次函数y=mx+m与函数y1y2的图像对称轴右侧曲线分别交于点PQ. PQ两点分别与准黄金直角三角形的顶点FG重合,求m的值并判断以CDQP为顶点的四边形形状,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1ADBD分别是△ABC的内角∠BAC、∠ABC的平分线,过点AAEAD,交BD的延长线于点E.

1)求证:∠E=C

2)如图2,如果AE=AB,且BDDE=23,求cosABC的值;

3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题:

1)他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图①,在中,边上的中线,若,求证:.

2)如图②,已知矩形,如果在矩形外存在一点,使得,求证:.(可以直接用第(1)问的结论)

3)在第(2)问的条件下,如果恰好是等边三角形,请求出此时矩形的两条邻边的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:点PABC的边上,且与ABC的顶点不重合.若满足PABPBCPAC至少有一个三角形与ABC相似(但不全等),则称点PABC的自相似点.如图①,已知点ABC的坐标分别为(10)、(30)、(01).

1)若点P的坐标为(20),求证点PABC的自相似点;

2)求除点(20)外ABC所有自相似点的坐标;

3)如图②,过点BDBBC交直线AC于点D,在直线AC上是否存在点G,使GBDGBC有公共的自相似点?若存在,请举例说明;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某兴趣小组想借助如图所示的直角墙角(两边足够长),用长的篱笆围成一个矩形花园(篱笆只围两边).

1)若围成的花园面积为,求花园的边长;

2)在点处有一颗树与墙的距离分别为,要能将这棵树围在花园内(含边界,不考虑树的粗细),又使得花园面积有最大值,求此时花园的边长.

查看答案和解析>>

同步练习册答案