【题目】如图,△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,则EF:AF=_____;若S△ABC=12,则S△ADF﹣S△BEF=_____.
【答案】 2
【解析】
过D作DG∥AE交CE于G,由点D是AC的中点,得到AD=AC,CG=EG,进而求得EF=DG,AF=DG,从而得到EF与AF的比,然后分别求出S△ABD,S△ABE再根据S△ADF﹣S△BEF=S△ABD﹣S△ABE即可求出最后的结果.
过D作DG∥AE交CE于G,
∵点D是AC的中点,
∴AD=AC,CG=EG,
∴AE=2DG,CE=2CG,
∵EC=2BE,
∴BE=EG,
∴EF=DG,
∴AF=DG,
∴EF:AF=,
∵S△ABC=12,
∴S△ABD=S△ABC=×12=6.
∵EC=2BE,S△ABC=12,
∴S△ABE=S△ABC=×12=4,
∵S△ABD﹣S△ABE=(S△ADF+S△ABF)﹣(S△ABF+S△BEF)=S△ADF﹣S△BEF,
即S△ADF﹣S△BEF=S△ABD﹣S△ABE=6﹣4=2.
故答案为:,2.
科目:初中数学 来源: 题型:
【题目】问题背景 如图1,在△ABC中,BC=4,AB=2AC.
问题初探 请写出任意一对满足条件的AB与AC的值:AB= ,AC= .
问题再探 如图2,在AC右侧作∠CAD=∠B,交BC的延长线于点D,求CD的长.
问题解决 求△ABC的面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长是,连接交于点O,并分别与边交于点,连接AE,下列结论: ; ; ; 当时, ,其中正确结论的个数是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“低碳生活,绿色出行”,2017年1月,某公司向深圳市场新投放共享单车640辆.
(1)若1月份到4月份新投放单车数量的月平均增长率相同,3月份新投放共享单车1000辆.请问该公司4月份在深圳市新投放共享单车多少辆?
(2)考虑到自行车市场需求不断增加,某商城准备用不超过70000元的资金再购进A,B两种规格的自行车100辆,已知A型的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆。假设所进车辆全部售完,为了使利润最大,该商城应如何进货?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在,O是AC上的一点, 与BC,AB分别切于点C,D, 与AC相交于点E,连接BO.
(1) 求证:CE2=2DEBO;
(2) 若BC=CE=6,则AE= ,AD= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2013年4月20日,四川省雅安市芦山县发生了7.0级地震,某校开展了“雅安,我们在一起”的赈灾捐款活动,其中九年级二班50名学生的捐款情况如下表所示:
捐款金额(元) | 5 | 10 | 15 | 20 | 50 |
捐款人数(人) | 7 | 18 | 10 | 12 | 3 |
(1)求这50个样本数据的平均数、众数和中位数;
(2)根据样本数据,估计该校九年级300名学生在本次活动中捐款多于15元的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与x轴交于点,与y轴交于点B,抛物线经过点.
求k的值和抛物线的解析式;
为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点.
若以O,B,N,P为顶点的四边形OBNP是平行四边形时,求m的值.
当 时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小丁设计的“利用直角三角形和它的斜边中点作矩形”的尺规作图过程.
已知:如图,在RtΔABC中,∠ABC=90°,0为AC的中点.
求作:四边形ABCD,使得四边形ABCD为矩形.
作法:①作射线BO,在线段BO的延长线上取点D,使得DO=BO;
②连接AD,CD,则四边形ABCD为矩形.
根据小丁设计的尺规作图过程.
(1)使用直尺和圆规,在图中补全图形(保留作图痕迹);
(2)完成下面的证明.
证明:∴点O为AC的中点,
∴AO=CO.
又∵DO=BO,
∵四边形ABCD为平行四边形(__________)(填推理的依据).
∵∠ABC=90°,
∴ABCD为矩形(_________)(填推理的依据).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.
(1)分别求出一次函数与反比例函数的表达式;
(2)过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com