【题目】定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.
(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,
①若AB=CD=1,AB//CD,求对角线BD的长.
②若AC⊥BD,求证:AD=CD.
(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形.求AE的长.
【答案】
(1)
解:①因为AB=CD=1,AB//CD,
所以四边形ABCD是平行四边形.
又因为AB=BC,
所以□ABCD是菱形.
又因为∠ABC=90度,
所以菱形ABCD是正方形.
所以BD= .
②如图1,连结AC,BD,
因为AB=BC,AC⊥BD,
所以∠ABD=∠CBD,
又因为BD=BD,
所以△ABD△CBD,
所以AD=CD.
(2)
解:若EF与BC垂直,则AE≠EF,BF≠EF,
所以四边形ABFE不是等腰直角四边形,不符合条件;
若EF与BC不垂直,
①当AE=AB时,如图2,
此时四边形ABFE是等腰直角四边形.
所以AE=AB=5.
②当BF=AB时,如图3,
此时四边形ABFE是等腰直角四边形.
所以BF=AB=5,
因为DE//BF,
所以△PED~△PFB,
所以DE:BF=PD:PB=1:2,
所以AE=9-2.5=6.5.
综上所述,AE的长为5或6.5.
【解析】(1)①由AB=CD=1,AB//CD,根据“有一组对边平行且相等的四边形是平行四边形”可得四边形ABCD是平行四边形.由邻边相等AB=BC,有一直角∠ABC=90度,所以菱形ABCD是正方形.则BD= ;②连结AC,BD,由AB=BC,AC⊥BD,可知四边形ABCD是一个筝形,则只要证明△ABD△CBD,即可得到AD=CD.(2)分类讨论:若EF与BC垂直,明示有AE≠EF,BF≠EF,即EF与两条邻边不相等;由∠A=∠ABC=90°,可分类讨论AB=AE时,AB=BF时去解答.
【考点精析】解答此题的关键在于理解平行四边形的判定的相关知识,掌握两组对边分别平行的四边形是平行四边形:两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象与反比例函数y= (x>0)的图象交于A(2,﹣1),B( ,n)两点,直线y=2与y轴交于点C.
(1)求一次函数与反比例函数的解析式;
(2)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,对“隔离直线”给出如下定义:
点P(x,m)是图形G1上的任意一点,点Q(x,n)是图形G2上的任意一点,若存在直线l:kx+b(k≠0)满足m≤kx+b且n≥kx+b,则称直线l:y=kx+b(k≠0)是图形G1与G2的“隔离直线”.
如图1,直线l:y=﹣x﹣4是函数y= (x<0)的图象与正方形OABC的一条“隔离直线”.
(1)在直线y1=﹣2x,y2=3x+1,y3=﹣x+3中,是图1函数y= (x<0)的图象与正方形OABC的“隔离直线”的为;
请你再写出一条符合题意的不同的“隔离直线”的表达式:;
(2)如图2,第一象限的等腰直角三角形EDF的两腰分别与坐标轴平行,直角顶点D的坐标是( ,1),⊙O的半径为2.是否存在△EDF与⊙O的“隔离直线”?若存在,求出此“隔离直线”的表达式;若不存在,请说明理由;
(3)正方形A1B1C1D1的一边在y轴上,其它三边都在y轴的右侧,点M(1,t)是此正方形的中心.若存在直线y=2x+b是函数y=x2﹣2x﹣3(0≤x≤4)的图象与正方形A1B1C1D1的“隔离直线”,请直接写出t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在第1个△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,第n个三角形的以An为顶点的内角的度数为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )
A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.
(1)判断∠ADC是否是直角,并说明理由;
(2)试求四边形草坪ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在下列条件中,不能作为判断△ABD≌△BAC的条件是( )
A. ∠D=∠C,∠BAD=∠ABC B. ∠BAD=∠ABC,∠ABD=∠BAC
C. BD=AC,∠BAD=∠ABC D. AD=BC,BD=AC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,我们定义点P(a,b)的“变换点”为Q.且规定:当a≥b时,Q为(b,﹣a);当a<b时,Q为(a,﹣b).
(1)点(2,1)的变换点坐标为;
(2)若点A(a,﹣2)的变换点在函数y= 的图象上,求a的值;
(3)已知直线l与坐标轴交于(6,0),(0,3)两点.将直线l上所有点的变换点组成一个新的图形记作M. 判断抛物线y=x2+c与图形M的交点个数,以及相应的c的取值范围,请直接写出结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC 为等边三角形,D、E 分别是边 AC、BC 上的点,且AD=CE,AE 与 BD 相交于点 P.
(1)求∠BPE 的度数;
(2)若 BF⊥AE 于点 F,试判断 BP 与 PF 的数量关系并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com