4£®Èçͼ1£¬µãAΪÅ×ÎïÏßC1£ºy=$\frac{1}{2}{x^2}$-2xµÄ¶¥µã£¬µãBµÄ×ø±êΪ£¨3£¬0£©£¬Ö±ÏßAB½»Å×ÎïÏßC1ÓÚÁíÒ»µãD£®
£¨1£©ÇóµãDµÄ×ø±ê£»
£¨2£©Èçͼ2£¬½«Ö±ÏßODÏòÏÂÆ½ÒÆm¸öµ¥Î»£¬½»Å×ÎïÏßÓÚµãE¡¢F£¬½»yÖáÓÚµãn£¬½»Å×ÎïÏߵĶԳÆÖáÓÚµãM£¬ÈôEM-FN=MN£¬ÇómµÄÖµ£»
£¨3£©Èçͼ1£¬Å×ÎïÏßC2ÓÚÅ×ÎïÏßC1¹ØÓÚÖ±Ïßx=t¶Ô³Æ£®Å×ÎïÏßC2ÓëÅ×ÎïÏßC1½»ÓÚµãG£¬ÓëxÖá½»ÓÚµãP¡¢Q£¨PÔÚQ×ó²à£©µ±GP¡ÍGOʱ£¬ÇótµÄÖµ£®

·ÖÎö £¨1£©¸ù¾ÝÅ×ÎïÏßC1£ºy=$\frac{1}{2}{x^2}$-2x¼´¿ÉÇóµÃ¶¥µãAµÄ×ø±ê£¬ÉèÖ±ÏßABµÄ½âÎöʽΪy=kx+b£¬ÀûÓôý¶¨ÏµÊý·¨ÇóµÃÖ±ÏßABµÄ½âÎöʽ£¬È»ºóÁªÁ¢·½³Ì£¬½â·½³Ì×é¼´¿ÉÇóµÃDµÄ×ø±ê£»
£¨2£©¸ù¾Ý´ý¶¨ÏµÊý·¨ÇóµÃÖ±ÏßODµÄ½âÎöʽy=x£¬´Ó¶øÇóµÃ¡ÏDOK=¡ÏONE=45¡ã£¬ÉèM£¨2£¬yM£©£¬N£¨0£¬yN£©£¬E£¨x1£¬y1£©£¬F£¨x2£¬y2£©£¬¸ù¾ÝµÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖʵóöNF=$\sqrt{2}$x2£¬MN=2$\sqrt{2}$£¬EM=$\sqrt{2}$£¨x1-2£©=$\sqrt{2}$x1-2$\sqrt{2}$£¬ÓÉEM-FN=MNµÃµ½$\sqrt{2}$x1-2$\sqrt{2}$-$\sqrt{2}$x2=2$\sqrt{2}$£¬´Ó¶øÇóµÃx1-x2=4£¬ÓÉ$\left\{\begin{array}{l}{y=x-m}\\{y=\frac{1}{2}{x}^{2}-2x}\end{array}\right.$µÃ$\frac{1}{2}{x^2}$-3x+m=0£¬¸ù¾Ý¸ùÓëϵÊýµÄ¹ØÏµµÃµ½x1+x2=6£¬x1x2=2m£¬½ø¶øµÃµ½£¨x1-x2£©2=£¨x1+x2£©2-4x1x2=16£¬ÕûÌå´úÈëµÃµ½62-4¡Á2m=16£¬½â·½³ÌÇóµÃm¼´¿É£®
£¨3£©ÉèG£¨t£¬$\frac{1}{2}$t2-2t£©£¬Ö±Ïßx=t½»xÖáÓÚH£¬Í¨¹ý¡÷OGH¡×¡÷GPH£¬µÃµ½GH2=OH•PH£¬¼´£¨$\frac{1}{2}$t2-2t£©2=t•PH£¬ÓÉÅ×ÎïÏßC1£ºy=$\frac{1}{2}{x^2}$-2xÓÚxÖáµÄÒ»¸ö½»µãΪK£¨4£¬0£©£¬Ôò¸ù¾ÝÖá¶Ô³ÆµÄÐÔÖʵõ½KH=PH=t-4£¬ËùÒÔ£¨$\frac{1}{2}$t2-2t£©2=t£¨t-4£©£¬½â·½³ÌÇóµÃt¼´¿É£®

½â´ð ½â£º£¨1£©Èçͼ1£¬¡ßµãAΪÅ×ÎïÏßC1£ºy=$\frac{1}{2}{x^2}$-2xµÄ¶¥µã£¬
¡àxA=-$\frac{b}{2a}$=-$\frac{-2}{2¡Á\frac{1}{2}}$=2£¬
¡àyA=$\frac{1}{2}$¡Á22-2¡Á2=-2£¬
¡àA£¨2£¬-2£©£¬
¡ßµãBµÄ×ø±êΪ£¨3£¬0£©£¬
ÉèÖ±ÏßABµÄ½âÎöʽΪy=kx+b£¬
¡à$\left\{\begin{array}{l}{2k+b=-2}\\{3k+b=0}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{k=2}\\{b=-6}\end{array}\right.$£¬
¡àÖ±ÏßABµÄ½âÎöʽΪy=2x-6£¬
½â$\left\{\begin{array}{l}{y=2x-6}\\{y=\frac{1}{2}{x}^{2}-2x}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=6}\\{y=6}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=2}\\{y=-2}\end{array}\right.$£¬
¡àµãDµÄ×ø±êΪ£¨6£¬6£©£®

£¨2£©Èçͼ2£¬ÉèÖ±ÏßODµÄ½âÎöʽΪy=ax£¬
¡à6=6a£¬½âµÃa=1£¬
¡àÖ±ÏßODµÄ½âÎöʽΪy=x£¬
¡àDµÄºá×ø±êºÍ×Ý×ø±ê¶¼µÈÓÚ6£¬
¡à¡ÏDOK=45¡ã£¬
¡ßEF¡ÎOD£¬
¡à¡ÏONE=45¡ã£¬
ÉèM£¨2£¬yM£©£¬N£¨0£¬yN£©£¬E£¨x1£¬y1£©£¬F£¨x2£¬y2£©£¬
¹ýF×÷FP¡ÍyÖáÓÚP£¬
¡àNF=$\sqrt{2}$x2£¬
ͬÀí£¬MN=2$\sqrt{2}$£¬EM=$\sqrt{2}$£¨x1-2£©=$\sqrt{2}$x1-2$\sqrt{2}$£¬
¡ßEM-FN=MN£¬
¡à$\sqrt{2}$x1-2$\sqrt{2}$-$\sqrt{2}$x2=2$\sqrt{2}$£¬
¡àx1-x2=4£¬
ÉèÖ±ÏßEFµÄ½âÎöʽΪy=x-m£¬
ÓÉ$\left\{\begin{array}{l}{y=x-m}\\{y=\frac{1}{2}{x}^{2}-2x}\end{array}\right.$µÃ$\frac{1}{2}{x^2}$-3x+m=0£¬
¡àx1+x2=-$\frac{b}{a}$=-$\frac{-3}{\frac{1}{2}}$=6£¬x1x2=$\frac{c}{a}$=2m£¬
¡à£¨x1-x2£©2=£¨x1+x2£©2-4x1x2=16£¬
¡à62-4¡Á2m=16£¬½âµÃm=$\frac{5}{2}$£®

£¨3£©Èçͼ3£¬ÉèG£¨t£¬$\frac{1}{2}$t2-2t£©£¬Ö±Ïßx=t½»xÖáÓÚH£¬
¡ßGP¡ÍGO£¬
¡à¡ÏOGP=90¡ã£¬
¡ß¡ÏOGH+¡ÏHGP=¡ÏOGH+¡ÏGOH=90¡ã£¬
¡à¡ÏHGP=¡ÏGOH£¬
¡à¡÷OGH¡×¡÷GPH£¬
¡àGH2=OH•PH£¬¼´£¨$\frac{1}{2}$t2-2t£©2=t•PH£¬
¡ßÅ×ÎïÏßC1£ºy=$\frac{1}{2}{x^2}$-2xÓÚxÖáµÄÒ»¸ö½»µãΪK£¨4£¬0£©£¬
¡àKH=PH=t-4£¬
¡àPH=t-4£¬
¡à£¨$\frac{1}{2}$t2-2t£©2=t£¨t-4£©£¬
¡à$\frac{1}{2}$t2-2t¡Ù0£¬
¡àt1=2+2$\sqrt{2}$£¬t2=2-2$\sqrt{2}$£¬
¡àt=2¡À2$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÁË´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯ÊýµÄ½âÎöʽ£¬µÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖÊ£¬½»µã×ø±êµÄÇ󷨣¬Èý½ÇÐÎÏàËÆµÄÅж¨ºÍÐÔÖÊ£¬½â·½³ÌºÍ·½³Ì×éµÈ£¬Àí½âÌâÒâ×÷³öͼÏóÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®»¯¼ò£º2£¨3x2-2xy£©-4£¨2x2-xy-1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®¡Ï1ºÍ¡Ï2ÊǶԶ¥½ÇµÄͼÐÎΪ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ÔÚRt¡÷ABCÖУ¬Á½Èñ½ÇµÄƽ·ÖÏßAD£¬BEÏཻÓÚµãO£¬OF¡ÍACÓÚµãF£¬OG¡ÍBCÓÚµãG£¬ÇóÖ¤£ºËıßÐÎOGCFÊÇÕý·½ÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬ÔÚÁâÐÎABCDÖУ¬¡ÏABC=120¡ã£¬×÷BE¡ÍAD£¬´¹×ãΪµãE£¬ÇóÖ¤£ºAE=DE£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖª£¬Èçͼ£¬ÔÚÖ±½ÇÌÝÐÎCOABÖУ¬CB¡ÎOA£¬ÒÔOΪԭµã½¨Á¢Æ½ÃæÖ±½Ç×ø±êϵ£¬A¡¢B¡¢CµÄ×ø±ê·Ö±ðΪA£¨10£¬0£©¡¢B£¨4£¬8£©¡¢C£¨0£¬8£©£¬DΪOAµÄÖе㣬¶¯µãP×ÔAµã³ö·¢ÑØA¡úB¡úC¡úOµÄ·ÏßÒÆ¶¯£¬ËÙ¶ÈΪÿÃë1¸öµ¥Î»£¬Òƶ¯Ê±¼ä¼ÇΪtÃ룬
£¨1£©¶¯µãPÔÚ´ÓAµ½BµÄÒÆ¶¯¹ý³ÌÖУ¬Éè¡÷APDµÄÃæ»ýΪS£¬ÊÔд³öSÓëtµÄº¯Êý¹ØÏµÊ½£¬Ö¸³ö×Ô±äÁ¿µÄȡֵ·¶Î§£¬²¢Çó³öSµÄ×î´óÖµ
£¨2£©¶¯µãP´Ó³ö·¢£¬¼¸ÃëÖÓºóÏß¶ÎPD½«ÌÝÐÎCOABµÄÃæ»ý·Ö³É1£º3Á½²¿·Ö£¿Çó³ö´ËʱPµãµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÔĶÁÏÂÃæ²ÄÁÏ£ºµãA¡¢BÔÚÊýÖáÉÏ·Ö±ð±íʾÓÐÀíÊýa¡¢b£¬A¡¢BÁ½µãÖ®¼äµÄ¾àÀë±íʾΪAB£¬ÔÚÊýÖáÉÏA¡¢BÁ½µãÖ®¼äµÄ¾àÀëAB=|a-b|£®»Ø´ðÏÂÁÐÎÊÌ⣺
£¨1£©ÊýÖáÉϱíʾ-3ºÍ1Á½µãÖ®¼äµÄ¾àÀëÊÇ4£¬ÊýÖáÉϱíʾ-2ºÍ3µÄÁ½µãÖ®¼äµÄ¾àÀëÊÇ5£»
£¨2£©ÊýÖáÉϱíʾxºÍ-1µÄÁ½µãÖ®¼äµÄ¾àÀë±íʾΪ|x+1|£»
£¨3£©Èôx±íʾһ¸öÓÐÀíÊý£¬Ôò|x-2|+|x+3|ÓÐ×îСֵÂð£¿ÈôÓУ¬ÇëÇó³ö×îСֵ£»ÈôûÓУ¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®»¯¼ò£ºa2•a3+£¨-a2£©3-2a£¨a2£©3-2[£¨a3£©3•a3]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖª·Öʽ-$\frac{6£¨a+3£©}{{a}^{2}-9}$µÄֵΪÕýÕûÊý£¬ÇóÕûÊýa£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸