分析 设矩形EFGH的宽EF=x,根据相似三角形对应高的比等于相似比列式求出EH,再根据矩形的面积列式整理,然后根据二次函数的最值问题解答即可
解答 解:如图,
设矩形EFGH的宽EF=x,则AN=AM-MN=12-x,
∵矩形的对边EH∥FG,
∴△AEH∽△ABC,
∴$\frac{AN}{AM}=\frac{EH}{BC}$,
即$\frac{16-x}{16}=\frac{EH}{20}$,
解得:EH=20-$\frac{5x}{4}$,
四边形EFGH的面积=x•(20-$\frac{5x}{4}$)=-$\frac{5}{4}$x2+20x=-$\frac{5}{4}$(x-8)2+80,
所以,当x=8,即EF=8时,四边形EFGH最大面积为80cm2,
此时EH=20-$\frac{5}{4}×8$=10,
∴此时矩形的长和宽分别是10cm,8cm.
点评 本题考查了相似三角形的应用,二次函数的最值问题,根据相似三角形的对应高的比等于相似比用矩形EFGH的宽表示出长是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 75m | B. | 50m | C. | 75$\sqrt{2}$m | D. | 50$\sqrt{2}$m |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 中位数 | B. | 平均数 | C. | 众数 | D. | 加权平均数 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com