精英家教网 > 初中数学 > 题目详情

【题目】如图,中,与点的同侧,且

1)如图1,点不与点重合,连结于点.设关于的函数解析式,写出自变量的取值范围;

2)是否存在点,使相似,若存在,求的长;若不存在,请说明理由;

3)如图2,过点垂足为.将以点为圆心,为半径的圆记为.若点上点的距离的最小值为,求的半径.

【答案】1;(2)存在,;(3

【解析】

1)由AEAC,∠ACB=90°,可得AEBC,然后由平行线分线段成比例定理,求得y关于x的函数解析式;
2)由题意易得要使△PAE与△ABC相似,只有∠EPA=90°,即CEAB,然后由△ABC∽△EAC,求得答案;
3)易得点C必在⊙E外部,此时点C到⊙E上点的距离的最小值为CE-DE.然后分别从当点E在线段AD上时与当点E在线段AD延长线上时,去分析求解即可求得答案.

解:

,而都是锐角,

要使相似,只有

此时,则

故存在点,使

此时

必在外部,

此时点上点的距离的最小值为

①当点在线段 上时,

解得:

的半径为

②当点在线段延长线上时,

解得:

的半径为

的半径为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经yax2+bx3A10)、B30)、C三点.

1)求抛物线解析式;

2)如图1,点PBC上方抛物线上一点,作PQy轴交BCQ点.请问是否存在点P使得△BPQ为等腰三角形?若存在,请直接写出P点坐标;若不存在,请说明理由;

3)如图2,连接AC,点D是线段AB上一点,作DEBCACE点,连接BE.若△BDE∽△CEB,求D点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数 的图象与正比例函数 的图象相交于(1,),两点,点在第四象限, 轴,.

(1)的值及点的坐标;

(2)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形ABCD中,AB=8BC=12,点E是边BC上一点,BE=5,点F是射线BA上一动点,连接EF,将△BEF沿着EF折叠,使B点的对应点P落在长方形一边的垂直平分线上,连接BP,则BP的长是_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线yax2+bx+ca≠0)的顶点为C(14),交x轴于AB两点,交y轴于点D,其中点B的坐标为(30)

1)求抛物线的解析式;

2)如图2,点P为直线BD上方抛物线上一点,若,请求出点P的坐标.

3)如图3M为线段AB上的一点,过点MMNBD,交线段AD于点N,连接MD,若DNM∽△BMD,请求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y|x22x3|的大致图象如图所示,如果方程|x22x3|mm为实数)有2个不相等的实数根,则m的取值范围是__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点IRtABC的内心,∠C90°AC3BC4,将∠ACB平移使其顶点CI重合,两边分别交ABDE,则IDE的周长为(  )

A.3B.4C.5D.7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以点O为圆心,OE为半径作优弧EF,连接OEOF,且OE3,∠EOF120°,在弧EF上任意取点AB(点B在点A的顺时针方向)且使AB2,以AB为边向弧内作正三角形ABC

1)发现:不论点A在弧上什么位置,点C与点O的距离不变,点C与点O的距离是   ;点C到直线EF的最大距离是   

2)思考:当点B在直线OE上时,求点COE的距离,在备用图1中画出示意图,并写出计算过程.

3)探究:当BCOE垂直或平行时,直接写出点COE的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°B=60°BC=2A′B′C′可以由ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且AB′A′在同一条直线上,则AA′的长为(  )

A. 4 B. 6 C. 3 D. 3

查看答案和解析>>

同步练习册答案