精英家教网 > 初中数学 > 题目详情

【题目】为方便市民出行,减轻城市中心交通压力,某市正在修建贯穿全城南北、东西的地铁1,2号线.已知修建地铁1号线24千米和2号线22千米共需投资265亿元,且1号线每千米的平均造价比2号线每千米的平均造价多0.5亿元.

(1)求1号线、2号线每千米的平均造价分别是多少亿元;

(2)除1,2号线外,该市规划到2019年还要再建91.8千米的地铁线网.据预算,这91.8千米地铁线网每千米的平均造价是1号线每千米的平均造价的1.2倍,则还需投资多少亿元?

【答案】(1)1号线、2号线每千米的平均造价分别是6亿元、5.5亿元;(2) 660.96亿元.

【解析】

假设1号线,2号线每千米的平均造价分别是x亿元,y亿元,根据“修建地铁1号线24千米和2号线22千米共需投资265亿元;若1号线每千米的平均造价比2号线的平均造价多0.5亿元”分别得出等式求出即可;

根据(1)中所求得出建91.8千米的地铁线网,每千米的造价,进而求出即可.

解:(1)设1号线、2号线每千米的平均造价分别是x亿元、y亿元.

由题意得

解得

答:1号线、2号线每千米的平均造价分别是6亿元、5.5亿元.

(2)91.8×6×1.2=660.96(亿元).

答:还需投资660.96亿元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】体考在即,初三(1)班的课题研究小组对本年级530名学生的体育达标情况进行调查,制作出如图所示的统计图,其中1班有50人.(注:30分以上为达标,满分50分)根据统计图,解答下面问题:
(1)初三(1)班学生体育达标率和本年级其余各班学生体育达标率各是多少?
(2)若除初三(1)班外其余班级学生体育考试成绩在30﹣﹣40分的有120人,请补全扇形统计图;(注:请在图中分数段所对应的圆心角的度数)
(3)如果要求全年级学生的体育达标率不低于90%,试问在本次调查中,该年级全体学生的体育达标率是否符合要求?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y1=x2﹣1交x轴的正半轴于点A,交y轴于点B,将此抛物线向右平移4个单位得抛物线y2 , 两条抛物线相交于点C.

(1)请直接写出抛物线y2的解析式;
(2)若点P是x轴上一动点,且满足∠CPA=∠OBA,求出所有满足条件的P点坐标;
(3)在第四象限内抛物线y2上,是否存在点Q,使得△QOC中OC边上的高h有最大值?若存在,请求出点Q的坐标及h的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:关于x的方程mx2-3(m+1)x+2m+3=0m≠0).

(1)若方程有两个相等的实数根,求m的值;

(2)求此方程的两个根(若所求方程的根不是常数,就用含m的式子表示);

(3)m为整数,当m取何值时方程的两个根均为正整数?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的周长为20,其中AB=8,

(1)用直尺和圆规作 AB 的垂直平分线 DE 交 AC 于点 E,垂足为 D,连接 EB;(保留作图痕迹,不要求写画法)

(2)在(1)作出 AB 的垂直平分线 DE 后,求△CBE 的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):

(1)①若∠DCE=45°,则∠ACB的度数为  

②若∠ACB=140°,求∠DCE的度数;

(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.

(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(不必说明理由);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中每个小正方形的边长为1,四边形ABCD的顶点都在格点上.

(1)在方格纸上建立平面直角坐标系,使四边形ABCD的顶点AC的坐标分别为(5,﹣1)(3,﹣3),并写出点D的坐标;

(2)(1)中所建坐标系中,画出四边形ABCD关于x轴的对称图形A1B1C1D1,并写出点B的对应点B1的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式AM=(i,j)表示正奇数M是第i组第j个数(从左往右数),如A7=(2,3),则A2013=( )
A.(45,77)
B.(45,39)
C.(32,46)
D.(32,23)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点B在线段AC上,点D、E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.
(1)求证:AC=AD+CE;
(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q; (i)当点P与A、B两点不重合时,求 的值;
(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)

查看答案和解析>>

同步练习册答案