【题目】“金山”超市现有甲、乙两种糖果若干kg,两种糖果的售价和进价如表
糖果 | 甲种 | 乙种 |
售价 | 36元/kg | 20元/kg |
进价 | 30元/kg | 16元/kg |
(1)超市准备用甲、乙两种糖果混合成杂拌糖出售,混合后糖果的售价是27.2元/kg,现要配制这种杂拌糖果100/kg,需要甲、乙两种糖果各多少千克?
(2)“六一”儿童节前夕,超市准备用5000元购进甲、乙两种糖果共200kg,如何进货才能使这批糖果获得最大利润,最大利润是多少?(注:进货量只能为整数)
【答案】(1)需要用甲种糖果45kg,乙种糖果55kg来配制杂拌糖;(2)甲种糖果进货128kg,乙种糖果进货72kg,这批糖果的最大利润为1056元.
【解析】
(1)根据题目中等量关系列出方程组,利用代入消元法解二元一次方程组即可得出;
(2)根据题目中数量关系先列出关于进货量m的一元一次不等式,求出m的最大值,然后列出利润y与进货量m的一次函数,一次函数的最大值即为最大利润.
(1)设需要用甲种糖果xkg,乙种糖果ykg,
根据题意,得
解这个方程组,得
所以,需要用甲种糖果45kg,乙种糖果55kg来配制杂拌糖.
(2)设甲种糖果进货mkg,根据题意,得
30×m+16(200-m)≤5000,
解这个不等式,得m≤,
若这批糖果的销售利润为y,
则有y=(36﹣30)m+(20﹣16)×(200﹣m)=2m+800,
∵y是m的一次函数,且k=2>0,
∴y随m的增大而增大,又m≤,
∵进货量m只能为整数,
∴当m=128时,y最大=128×2+800=1056(元).
所以,甲种糖果进货128kg,乙种糖果进货72kg,这批糖果的最大利润为1056元.
科目:初中数学 来源: 题型:
【题目】已知一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的P(,8),Q(4,m)两点,与x轴交于A点.
(1)分别求出这两个函数的表达式;
(2)写出点P关于原点的对称点P'的坐标;
(3)求∠P'AO的正弦值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,分别是,上的动点,将沿折叠.
(1)当点与点重合时,如图1.若,,则的周长为_____.
(2)定义:若在三角形中,期中一条边是另一条边的2倍,则称这个三角形为“倍边三角形”.当点与点重合时,如图2.若,则是倍边三角形吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设y是关于x的一次函数,其图象与y轴交点的纵坐标为﹣10,且当x=1时,y=﹣5.
(1)求该一次函数图象与坐标轴围成的三角形面积;
(2)当函数值为时,自变量的取值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A在y轴上,其坐标为(0,4),x轴上的一动
P从原点O出发,沿x轴正半轴方向运动,速度为每秒1个单位长度,以P为直角顶点
第一象限内作等腰Rt△APB.设P点的运动时间为t秒.
(1)填空:当t=2时,点B的坐标为.
(2)在P点的运动过程中,当AB∥x轴时,求t的值;
(3)通过探索,发现无论P点运动到何处,点B始终在一直线上,试求出该直线的函数解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)【问题发现】
如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为
(2)【拓展研究】
在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;
(3)【问题发现】
当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,将AB边沿AD折叠,发现B点的对应点E正好在AC的垂直平分线上,则∠C=_______
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两个大小不同的等腰直角三角形三角板如图 1 所示放置,图 2 是由它抽像出的几何图形,B, C, E在同一 条直线上,连结DC.
(1)请找出图 2 中的全等三角形,并给予证明(说明:结论中不得含有未标识的字 母);
(2)证明:DC ⊥ BE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:对于任何数a,符号[a]表示不大于a的最大整数.
例如:[5.7]=5,[5]=5,[﹣1.5]=﹣2.
(1)[﹣]= ;
(2)如果[a]=3,那么a的取值范围是 ;
(3)如果[]=﹣3,求满足条件的所有整数x.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com