【题目】如图,在平面直角坐标系中,一次函数y=ax+b的图象与反比例函数y(k为常数,k≠0)的图象交于二、四象限内的A、B两点,与y轴交于C点.点A的坐标为(m,5),点B的坐标为(5,n),tan∠AOC.
(1)求k的值;
(2)直接写出点B的坐标,并求直线AB的解析式;
(3)P是y轴上一点,且S△PBC=2S△AOB,求点P的坐标.
【答案】(1)﹣10;(2)B(5,﹣2),y=﹣x+3;(3)P点的坐标为(0,)或(0,).
【解析】
(1)作AD⊥y轴于D,根据正切函数,可得AD的长,得到A的坐标,根据待定系数法,可得k的值;
(2)根据题意即可求得B点的坐标,然后根据待定系数法即可求得直线AB的解析式;
由直线AB为y=﹣x+3可知,C(0,3);
(3)先求出C点坐标,即可求得S△AOB,设P(0,t),根据S△PBC=2S△AOB,即可求出t值,进而求得P点坐标.
(1)作AD⊥y轴于D,
∵点A的坐标为(m,5),
∴OD=5
∵tan∠AOC,
∴,即,
∴AD=2,
∴A(﹣2,5).
∵在反比例函数y(k为常数,k≠0)的图象上,
∴k=﹣2×5=﹣10;
故答案为:-10
(2)∵反比例函数为y,
∴B(5,﹣2).
∵A、B在一次函数y=ax+b的图象上,
∴
解得,
∴直线AB的解析式为y=﹣x+3;
故答案为:B(5,﹣2),y=﹣x+3
(3)连接OB,
由直线AB为y=﹣x+3可知,C(0,3).
∵S△AOB=S△AOC+S△BOC3×23×5,
∵P是y轴上一点,
∴设P(0,t),
∴S△PBC|t﹣3|×5|t﹣3|.
∵S△PBC=2S△AOB,
∴|t﹣3|=2,
∴t或t,
∴P点的坐标为(0,)或(0,).
科目:初中数学 来源: 题型:
【题目】如图,用一段长为30m的篱笆围成一个一边靠墙的矩形菜园(矩形ABCD),墙长为22m,这个矩形的长AB=xm,菜园的面积为Sm2,且AB>AD.
(1)求S与x之间的函数关系式,并写出自变量x的取值范围.
(2)若要围建的菜园为100m2时,求该莱园的长.
(3)当该菜园的长为多少m时,菜园的面积最大?最大面积是多少m2?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了丰富学生课余生活,开展了“第二课堂”活动,推出了以下四种选修课程:.绘画;.唱歌;.跳舞;.演讲;.书法.学校规定:每个学生都必须报名且只能选择其中的一个课程.学校随机抽查了部分学生,对他们选择的课程情况进行了统计,并绘制了如下两幅不完整的统计图.
请结合统计图中的信息解决下列问题:
(1)这次抽查的学生人数是多少人?
(2)将条形统计图补充完整.
(3)求扇形统计图中课程所对应扇形的圆心角的度数.
(4)如果该校共有1200名学生,请你估计该校选择课程的学生约有多少人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y1=ax+b(a≠0)与反比例函数y2=(k>0),两函数图象交于(4,1),(﹣2,n)两点.
(1)求a,k的值;
(2)若y2>y1>0,求x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°得到△DEC,点A、B的对应点分别是D、E,点F是边AC中点,①△BCE是等边三角形,②DE=BF,③△ABC≌△CFD,④四边形BEDF是平行四边形.则其中正确结论的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=上,且OA⊥OB,,BC、AD垂直于x轴于C、D,则k的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年12月以来,湖北省武汉市部分医院陆续发现不明原因肺炎病例,现已证实该肺炎为一种新型冠状病毒感染的肺炎,其传染性较强.为了有效地避免交叉感染,需要采取以下防护措施:①戴口罩;②勤洗手;③少出门;④重隔离;⑤捂口鼻;⑥谨慎吃.某公司为了解员工对防护措施的了解程度(包括不了解、了解很少、基本了解和很了解),通过网上问卷调查的方式进行了随机抽样调查(每名员工必须且只能选择一项),并将调查结果绘制成如下两幅统计图.
请你根据上面的信息,解答下列问题
(1)本次共调查了_______名员工,条形统计图中________;
(2)若该公司共有员工1000名,请你估计不了解防护措施的人数;
(3)在调查中,发现有4名员工对防护措施很了解,其中有3名男员工、1名女员工.若准备从他们中随机抽取2名,让其在公司群内普及防护措施,求恰好抽中一男一女的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+3(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(3,0),点C三点.
(1)求抛物线的解析式;
(2)x轴上是否存在点P,使PC+PB最小?若存在,请求出点P的坐标及PC+PB的最小值;若不存在,请说明理由;
(3)连接BC,设E为线段BC中点.若M是抛物线上一动点,将点M绕点E旋转180°得到点N,当以B、C、M、N为顶点的四边形是矩形时,直接写出点N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点B在第一象限,BA⊥x轴于点A,反比例函数y=(x>0)的图象与线段AB相交于点C,C是线段AB的中点,点C关于直线y=x的对称点C'的坐标为(m,6)(m≠6),若△OAB的面积为12,则k的值为( )
A.4B.6C.8D.12
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com