精英家教网 > 初中数学 > 题目详情
14.下列各组数能构成勾股数的是(  )
A.2,$\sqrt{3}$,$\sqrt{7}$B.12,16,20C.$\frac{1}{3}$,$\frac{1}{4}$,$\frac{1}{5}$D.32,42,52

分析 欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.

解答 解:A、22+($\sqrt{3}$)2=($\sqrt{7}$)2,但不是正整数,故选项错误;
B、122+162=202,能构成直角三角形,是整数,故选项正确;
C、($\frac{1}{4}$)2+($\frac{1}{5}$)2≠($\frac{1}{3}$)2,不能构成直角三角形,故选项错误;
D、(322+(422≠(522,不能构成直角三角形,故选项错误.
故选B.

点评 此题主要考查了勾股数,关键是掌握勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

4.如图,在矩形ABCD中,AB=3,AD=4,以对角线的一半为边依次作平行四边形,则${S_{平行四边形{O_1}{B_1}{B_2}{C_1}}}$=$\frac{3}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.求解下列一元一次方程
(1)-3(x+3)+6(x-1)=24;         
(2)$\frac{0.1x-0.2}{0.3}$=1-$\frac{1+2x}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在平面直角坐标系中,等边△OAB的顶点O为坐标原点,B点坐标为(4,0),且△OAB的面积为4$\sqrt{3}$.点P从A点出发沿着射线AB运动,点Q从B点出发沿X轴正半轴运动,点P、点Q同时出发,速度均为每秒2个单位长度,运动时间为x秒,过点P作PH⊥X轴于点H,设HQ的长度为y个单位长度.
(1)求A点的坐标;
(2)当点P在线段AB上运动时,取BQ的中点M,求HM的长度;
(3)在点P、点Q的运动过程中,当∠PQB=30°时,求点P、点Q运动时间x的值,并直接写出此时H点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.下列几何体:①球;②长方体;③圆柱;④圆锥;⑤正方体,用一个平面去截上面的几何体,其中能截出圆的几何体有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,点P在射线AB的上方,且∠PAB=45°,PA=2,点M是射线AB上的动点(点M不与点A重合),现将点P绕点A按顺时针方向旋转60°,到点Q,将点M绕点P按逆时针方向旋转60°到点N,连结AQ,PM,PN,作直线QN.
(1)求证:AM=QN;
(2)直线QN与以点P为圆心,以PN的长为半径的圆是否存在相切的情况?若存在,请求出此时AM的长,若不存在,请说明理由;
(3)当以点P为圆心,以PN的长为半径的圆经过点Q时,直接写出劣弧NQ与两条半径所围成的扇形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.二次函数y=x2+(2m+1)x+(m2-1)有最小值-2,则m=$\frac{3}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,P为正方形ABCD的AD边上一点,PE⊥AD交BD于点E点,将△PCD绕C点逆时针方向旋转90°到△FCB的位置,连接PF交BD于Q点.
①求证:BQ=EQ;
②探究线段PQ与线段CQ的关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知|a|=4,|b|=2,且|a+b|=|a|+|b|,求a-b的值.

查看答案和解析>>

同步练习册答案