·ÖÎö £¨1£©ÏÈÈ·¶¨Bµã×ø±ê£¬Ôò¿ÉµÃµ½bµÄÖµ£¬½Ó×ÅÀûÓÃÒ»´Îº¯Êý½âÎöʽÇó³öAµã×ø±ê£¬È»ºó°ÑAµã×ø±ê´úÈë$y=a{x^2}-\frac{7}{5}ax-4$Çó³öa¼´¿ÉµÃµ½Å×ÎïÏß½âÎöʽ£»
£¨2£©Èçͼһ£¬AC½»yÖáÓÚF£¬ÀûÓÃÁâÐεÄÐÔÖʵõ½ACƽ·Ö¡ÏDAE£¬Ôò¸ù¾Ý½Çƽ·ÖÏßµÄÐÔÖʶ¨ÀíµÃµ½$\frac{OF}{FB}$=$\frac{AO}{AB}$=$\frac{3}{5}$£¬Ôò¿ÉÈ·¶¨F£¨0£¬-$\frac{3}{2}$£©£¬½Ó×ÅÀûÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏßAFµÄ½âÎöʽΪy=$\frac{1}{2}$x-$\frac{3}{2}$£¬È»ºóͨ¹ý½â·½³Ì$\left\{\begin{array}{l}{y=\frac{5}{6}{x}^{2}-\frac{7}{6}x-4}\\{y=\frac{1}{2}x-\frac{3}{2}}\end{array}\right.$µÃC£¨-1£¬-2£©£¬ÔÙÇó³öEµã×ø±ê£¬´Ó¶øµÃµ½CEµÄ³¤£¬È»ºó¸ù¾ÝÁâÐεÄÐÔÖʼÆËãÁâÐεÄÖܳ¤£»
£¨3£©Èçͼ¶þ£¬×÷PH¡ÍyÖáÓÚH£¬×÷C¡äG¡ÍyÖáÓÚG£¬AM¡ÍC¡äGÓÚM£¬ÏÈÀûÓù´¹É¶¨ÀíµÄÄæ¶¨ÀíÅжϡ÷ACBΪֱ½ÇÈý½ÇÐΣ¬¡ÏACB=90¡ã£¬Ôò¸ù¾ÝÕÛµþÐÔÖʵáÏAC¡äB=¡ÏACB=90¡ã£¬BC¡ä=BC=$\sqrt{5}$£¬AC¡ä=AC=2$\sqrt{5}$£¬ÔÙÖ¤Ã÷Rt¡÷BGC¡ä¡×Rt¡÷C¡äMA£¬ÉèBG=c£¬CG¡ä=d£¬ÀûÓÃÏàËÆ±ÈµÃµ½C¡äM=2BG=2c£¬AM=2CG¡ä=2d£¬ÀûÓÃd+2c=3£¬4+c=2d½âµÃc=$\frac{2}{5}$£¬d=$\frac{11}{5}$£¬ÓÚÊǿɵõ½C¡äµãµÄ×ø±êΪ£¨$\frac{11}{5}$£¬-$\frac{22}{5}$£©£»ÉèP£¨t£¬$\frac{5}{6}$t2-$\frac{7}{6}$t-4£©£¬ÀûÓÃS¡÷AOB+SÌÝÐÎAOHP-S¡÷PBH=S¡÷PABµÃµ½$\frac{1}{2}$•3•4+$\frac{1}{2}$£¨3+t£©•£¨$\frac{5}{6}$t2-$\frac{7}{6}$t-4£©-$\frac{1}{2}$•t•£¨$\frac{5}{6}$t2-$\frac{7}{6}$t-4+4£©=$\frac{25}{2}$£¬Í¨¹ý½â·½³ÌµÃµ½P£¨5£¬11£©£¬½Ó×ÅÀûÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏßPAµÄ½âÎöʽ£¬È»ºó¸ù¾ÝÒ»´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷ÅжÏC¡äµãÊÇ·ñÔÚÖ±ÏßAPÉÏ£®
½â´ð ½â£º£¨1£©µ±x=0ʱ£¬$y=a{x^2}-\frac{7}{5}ax-4$=-4£¬ÔòB£¨0£¬-4£©£¬
°ÑB£¨0£¬-4£©´úÈë$y=\frac{4}{3}x+b$µÃb=-4£¬ÔòÖ±ÏßABµÄ½âÎöʽΪy=$\frac{4}{3}$x-4£¬
µ±y=0ʱ£¬$\frac{4}{3}$x-4=0£¬½âµÃx=3£¬ÔòA£¨3£¬0£©£¬
°ÑA£¨3£¬0£©´úÈë$y=a{x^2}-\frac{7}{5}ax-4$µÃ9a-$\frac{21}{5}$a-4=0£¬½âµÃa=$\frac{5}{6}$£¬
ËùÒÔÅ×ÎïÏß½âÎöʽΪy=$\frac{5}{6}$x2-$\frac{7}{6}$x-4£»
£¨2£©
Èçͼһ£¬AC½»yÖáÓÚF£¬
ÔÚRt¡÷OABÖУ¬AB=$\sqrt{O{A}^{2}+O{B}^{2}}$=$\sqrt{{3}^{2}+{4}^{2}}$=5£¬
¡ßËıßÐÎADCEΪÁâÐΣ¬
¡àACƽ·Ö¡ÏDAE£¬
¡à$\frac{OF}{FB}$=$\frac{AO}{AB}$=$\frac{3}{5}$£¬
¡àOF=$\frac{3}{8}$OB=$\frac{3}{2}$£¬ÔòF£¨0£¬-$\frac{3}{2}$£©£¬
ÉèÖ±ÏßAFµÄ½âÎöʽΪy=mx+n£¬
°ÑA£¨3£¬0£©£¬F£¨0£¬-$\frac{3}{2}$£©´úÈëµÃ$\left\{\begin{array}{l}{3m+n=0}\\{n=-\frac{3}{2}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{m=\frac{1}{2}}\\{n=-\frac{3}{2}}\end{array}\right.$£¬
¡àÖ±ÏßAFµÄ½âÎöʽΪy=$\frac{1}{2}$x-$\frac{3}{2}$£¬
½â·½³Ì$\left\{\begin{array}{l}{y=\frac{5}{6}{x}^{2}-\frac{7}{6}x-4}\\{y=\frac{1}{2}x-\frac{3}{2}}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=3}\\{y=0}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=-1}\\{y=-2}\end{array}\right.$£¬ÔòC£¨-1£¬-2£©£¬![]()
µ±y=-2ʱ£¬$\frac{4}{3}$x-4=-2£¬½âµÃx=$\frac{3}{2}$£¬ÔòE£¨$\frac{3}{2}$£¬-2£©£¬
¡àCE=$\frac{3}{2}$-£¨-1£©=$\frac{5}{2}$£¬
¡àÁâÐÎADCEµÄÖܳ¤=4CE=10£»
£¨3£©ÔÚ£®
Èçͼ¶þ£¬×÷PH¡ÍyÖáÓÚH£¬×÷C¡äG¡ÍyÖáÓÚG£¬AM¡ÍC¡äGÓÚM£¬
¡ßBC2=12+£¨-2+4£©2=5£¬AC2=£¨3+1£©2+22=20£¬AB2=52£¬
¡àBC2+AC2=AB2£¬
¡à¡÷ACBΪֱ½ÇÈý½ÇÐΣ¬¡ÏACB=90¡ã£¬
¡ß¡÷ACBÑØAB·ÕÛ£¬µãCµÄ¶Ô³ÆµãÊÇC¡ä£¬
¡à¡ÏAC¡äB=¡ÏACB=90¡ã£¬BC¡ä=BC=$\sqrt{5}$£¬AC¡ä=AC=2$\sqrt{5}$£¬
¡ß¡ÏBC¡äG+¡ÏAC¡äM=90¡ã£¬¡ÏBC¡äG+¡ÏC¡äBG=90¡ã£¬
¡à¡ÏAC¡äM=¡ÏC¡äBG£¬
¡àRt¡÷BGC¡ä¡×Rt¡÷C¡äMA£¬
¡à$\frac{BG}{C¡äM}$=$\frac{C¡äG}{AM}$=$\frac{BC¡ä}{AC¡ä}$=$\frac{\sqrt{5}}{2\sqrt{5}}$=$\frac{1}{2}$£¬
ÉèBG=c£¬CG¡ä=d£¬ÔòC¡äM=2BG=2c£¬AM=2CG¡ä=2d£¬
¡àd+2c=3£¬4+c=2d£¬½âµÃc=$\frac{2}{5}$£¬d=$\frac{11}{5}$£¬
¡àOG=4+$\frac{2}{5}$=$\frac{22}{5}$£¬
¡àC¡äµãµÄ×ø±êΪ£¨$\frac{11}{5}$£¬-$\frac{22}{5}$£©£¬
ÉèP£¨t£¬$\frac{5}{6}$t2-$\frac{7}{6}$t-4£©£¬
¡ßS¡÷AOB+SÌÝÐÎAOHP-S¡÷PBH=S¡÷PAB£¬
¡à$\frac{1}{2}$•3•4+$\frac{1}{2}$£¨3+t£©•£¨$\frac{5}{6}$t2-$\frac{7}{6}$t-4£©-$\frac{1}{2}$•t•£¨$\frac{5}{6}$t2-$\frac{7}{6}$t-4+4£©=$\frac{25}{2}$£¬
ÕûÀíµÃt2-3t-10=0£¬½âµÃt1=-2£¨ÉáÈ¥£©£¬t2=5£¬ÔòP£¨5£¬11£©£¬
ÉèÖ±ÏßPAµÄ½âÎöʽΪy=px+q£¬
°ÑP£¨5£¬11£©£¬A£¨3£¬0£©´úÈëµÃ$\left\{\begin{array}{l}{5p+q=11}\\{3p+q=0}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{p=\frac{11}{2}}\\{q=-\frac{33}{2}}\end{array}\right.$£¬
ËùÒÔÖ±ÏßPAµÄ½âÎöʽΪy=$\frac{11}{2}$x-$\frac{33}{2}$£¬
µ±x=$\frac{11}{5}$ʱ£¬y=$\frac{11}{2}$x-$\frac{33}{2}$=-$\frac{22}{5}$£¬
¡àC¡ä£¨$\frac{11}{5}$£¬-$\frac{22}{5}$£©ÔÚÖ±ÏßAPÉÏ£®
µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌ⣺ÊìÁ·ÕÆÎÕ¶þ´Îº¯ÊýͼÏó¡¢Ò»´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷ºÍÁâÐεÄÐÔÖÊ£»»áÀûÓôý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýºÍÒ»´Îº¯Êý½âÎöʽ£»Àí½â×ø±êÓëͼÐÎÐÔÖÊ£¬¼ÇסÁ½µã¼äµÄ¾àÀ빫ʽ£»ÀûÓÃÏàËÆ¼ÆËãÏ߶εij¤ºÍÀûÓù´¹É¶¨ÀíµÄÄæ¶¨ÀíÅжÏÈý½ÇÐÎΪֱ½ÇÈý½ÇÐΣ®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ÈÎÒâÈý½ÇÐεÄÄڽǺͶ¼ÊÇ180¡ã | |
| B£® | Èý½ÇÐΰ´±ß·Ö¿É·ÖΪ²»µÈ±ßÈý½ÇÐκ͵ÈÑüÈý½ÇÐÎ | |
| C£® | Èý½ÇÐεÄÖÐÏß¡¢½Çƽ·ÖÏß¡¢¸ß¶¼ÊÇÏß¶Î | |
| D£® | Èý½ÇÐεÄÒ»¸öÍâ½Ç´óÓÚÈκÎÒ»¸öÄÚ½Ç |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 4Ã× | B£® | 2Ã× | C£® | 1.8Ã× | D£® | 3.6Ã× |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com