10£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬µãOÎª×ø±êÔ­µã£¬Ö±Ïß$y=\frac{4}{3}x+b$ÓëxÖá½»ÓÚµãA£¬ÓëyÖá½»ÓÚµãB£¬Å×ÎïÏß$y=a{x^2}-\frac{7}{5}ax-4$¾­¹ýµãA¡¢B£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©µãCÔÚ£¨1£©ÖÐËùÇóµÃµÄÅ×ÎïÏߵĵÚÈýÏóÏÞÉÏ£¬µãDÔÚxÖáÉÏ£¬µãEÔÚABÉÏ£¬ÈôËıßÐÎADCEΪÁâÐΣ¬ÇóÁâÐÎADCEµÄÖܳ¤£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬µãPÊǵÚÒ»ÏóÏÞµÄÅ×ÎïÏßÉϵĵ㣬ÈôS¡÷ABP=$\frac{25}{2}$£¬½«¡÷ACBÑØAB·­ÕÛ£¬µãCµÄ¶Ô³ÆµãÊÇC¡ä£¬²¢ÅжϵãC¡äÊÇ·ñÔÚÖ±ÏßPAÉÏ£¿Èô´æÔÚ£¬ÇóµãC¡äµÄ×ø±ê£»Èô²»ÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÏÈÈ·¶¨Bµã×ø±ê£¬Ôò¿ÉµÃµ½bµÄÖµ£¬½Ó×ÅÀûÓÃÒ»´Îº¯Êý½âÎöʽÇó³öAµã×ø±ê£¬È»ºó°ÑAµã×ø±ê´úÈë$y=a{x^2}-\frac{7}{5}ax-4$Çó³öa¼´¿ÉµÃµ½Å×ÎïÏß½âÎöʽ£»
£¨2£©Èçͼһ£¬AC½»yÖáÓÚF£¬ÀûÓÃÁâÐεÄÐÔÖʵõ½ACƽ·Ö¡ÏDAE£¬Ôò¸ù¾Ý½Çƽ·ÖÏßµÄÐÔÖʶ¨ÀíµÃµ½$\frac{OF}{FB}$=$\frac{AO}{AB}$=$\frac{3}{5}$£¬Ôò¿ÉÈ·¶¨F£¨0£¬-$\frac{3}{2}$£©£¬½Ó×ÅÀûÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏßAFµÄ½âÎöʽΪy=$\frac{1}{2}$x-$\frac{3}{2}$£¬È»ºóͨ¹ý½â·½³Ì$\left\{\begin{array}{l}{y=\frac{5}{6}{x}^{2}-\frac{7}{6}x-4}\\{y=\frac{1}{2}x-\frac{3}{2}}\end{array}\right.$µÃC£¨-1£¬-2£©£¬ÔÙÇó³öEµã×ø±ê£¬´Ó¶øµÃµ½CEµÄ³¤£¬È»ºó¸ù¾ÝÁâÐεÄÐÔÖʼÆËãÁâÐεÄÖܳ¤£»
£¨3£©Èçͼ¶þ£¬×÷PH¡ÍyÖáÓÚH£¬×÷C¡äG¡ÍyÖáÓÚG£¬AM¡ÍC¡äGÓÚM£¬ÏÈÀûÓù´¹É¶¨ÀíµÄÄæ¶¨ÀíÅжϡ÷ACBΪֱ½ÇÈý½ÇÐΣ¬¡ÏACB=90¡ã£¬Ôò¸ù¾ÝÕÛµþÐÔÖʵáÏAC¡äB=¡ÏACB=90¡ã£¬BC¡ä=BC=$\sqrt{5}$£¬AC¡ä=AC=2$\sqrt{5}$£¬ÔÙÖ¤Ã÷Rt¡÷BGC¡ä¡×Rt¡÷C¡äMA£¬ÉèBG=c£¬CG¡ä=d£¬ÀûÓÃÏàËÆ±ÈµÃµ½C¡äM=2BG=2c£¬AM=2CG¡ä=2d£¬ÀûÓÃd+2c=3£¬4+c=2d½âµÃc=$\frac{2}{5}$£¬d=$\frac{11}{5}$£¬ÓÚÊǿɵõ½C¡äµãµÄ×ø±êΪ£¨$\frac{11}{5}$£¬-$\frac{22}{5}$£©£»ÉèP£¨t£¬$\frac{5}{6}$t2-$\frac{7}{6}$t-4£©£¬ÀûÓÃS¡÷AOB+SÌÝÐÎAOHP-S¡÷PBH=S¡÷PABµÃµ½$\frac{1}{2}$•3•4+$\frac{1}{2}$£¨3+t£©•£¨$\frac{5}{6}$t2-$\frac{7}{6}$t-4£©-$\frac{1}{2}$•t•£¨$\frac{5}{6}$t2-$\frac{7}{6}$t-4+4£©=$\frac{25}{2}$£¬Í¨¹ý½â·½³ÌµÃµ½P£¨5£¬11£©£¬½Ó×ÅÀûÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏßPAµÄ½âÎöʽ£¬È»ºó¸ù¾ÝÒ»´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷ÅжÏC¡äµãÊÇ·ñÔÚÖ±ÏßAPÉÏ£®

½â´ð ½â£º£¨1£©µ±x=0ʱ£¬$y=a{x^2}-\frac{7}{5}ax-4$=-4£¬ÔòB£¨0£¬-4£©£¬
°ÑB£¨0£¬-4£©´úÈë$y=\frac{4}{3}x+b$µÃb=-4£¬ÔòÖ±ÏßABµÄ½âÎöʽΪy=$\frac{4}{3}$x-4£¬
µ±y=0ʱ£¬$\frac{4}{3}$x-4=0£¬½âµÃx=3£¬ÔòA£¨3£¬0£©£¬
°ÑA£¨3£¬0£©´úÈë$y=a{x^2}-\frac{7}{5}ax-4$µÃ9a-$\frac{21}{5}$a-4=0£¬½âµÃa=$\frac{5}{6}$£¬
ËùÒÔÅ×ÎïÏß½âÎöʽΪy=$\frac{5}{6}$x2-$\frac{7}{6}$x-4£»
£¨2£©Èçͼһ£¬AC½»yÖáÓÚF£¬
ÔÚRt¡÷OABÖУ¬AB=$\sqrt{O{A}^{2}+O{B}^{2}}$=$\sqrt{{3}^{2}+{4}^{2}}$=5£¬
¡ßËıßÐÎADCEΪÁâÐΣ¬
¡àACƽ·Ö¡ÏDAE£¬
¡à$\frac{OF}{FB}$=$\frac{AO}{AB}$=$\frac{3}{5}$£¬
¡àOF=$\frac{3}{8}$OB=$\frac{3}{2}$£¬ÔòF£¨0£¬-$\frac{3}{2}$£©£¬
ÉèÖ±ÏßAFµÄ½âÎöʽΪy=mx+n£¬
°ÑA£¨3£¬0£©£¬F£¨0£¬-$\frac{3}{2}$£©´úÈëµÃ$\left\{\begin{array}{l}{3m+n=0}\\{n=-\frac{3}{2}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{m=\frac{1}{2}}\\{n=-\frac{3}{2}}\end{array}\right.$£¬
¡àÖ±ÏßAFµÄ½âÎöʽΪy=$\frac{1}{2}$x-$\frac{3}{2}$£¬
½â·½³Ì$\left\{\begin{array}{l}{y=\frac{5}{6}{x}^{2}-\frac{7}{6}x-4}\\{y=\frac{1}{2}x-\frac{3}{2}}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=3}\\{y=0}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=-1}\\{y=-2}\end{array}\right.$£¬ÔòC£¨-1£¬-2£©£¬
µ±y=-2ʱ£¬$\frac{4}{3}$x-4=-2£¬½âµÃx=$\frac{3}{2}$£¬ÔòE£¨$\frac{3}{2}$£¬-2£©£¬
¡àCE=$\frac{3}{2}$-£¨-1£©=$\frac{5}{2}$£¬
¡àÁâÐÎADCEµÄÖܳ¤=4CE=10£»
£¨3£©ÔÚ£®
Èçͼ¶þ£¬×÷PH¡ÍyÖáÓÚH£¬×÷C¡äG¡ÍyÖáÓÚG£¬AM¡ÍC¡äGÓÚM£¬
¡ßBC2=12+£¨-2+4£©2=5£¬AC2=£¨3+1£©2+22=20£¬AB2=52£¬
¡àBC2+AC2=AB2£¬
¡à¡÷ACBΪֱ½ÇÈý½ÇÐΣ¬¡ÏACB=90¡ã£¬
¡ß¡÷ACBÑØAB·­ÕÛ£¬µãCµÄ¶Ô³ÆµãÊÇC¡ä£¬
¡à¡ÏAC¡äB=¡ÏACB=90¡ã£¬BC¡ä=BC=$\sqrt{5}$£¬AC¡ä=AC=2$\sqrt{5}$£¬
¡ß¡ÏBC¡äG+¡ÏAC¡äM=90¡ã£¬¡ÏBC¡äG+¡ÏC¡äBG=90¡ã£¬
¡à¡ÏAC¡äM=¡ÏC¡äBG£¬
¡àRt¡÷BGC¡ä¡×Rt¡÷C¡äMA£¬
¡à$\frac{BG}{C¡äM}$=$\frac{C¡äG}{AM}$=$\frac{BC¡ä}{AC¡ä}$=$\frac{\sqrt{5}}{2\sqrt{5}}$=$\frac{1}{2}$£¬
ÉèBG=c£¬CG¡ä=d£¬ÔòC¡äM=2BG=2c£¬AM=2CG¡ä=2d£¬
¡àd+2c=3£¬4+c=2d£¬½âµÃc=$\frac{2}{5}$£¬d=$\frac{11}{5}$£¬
¡àOG=4+$\frac{2}{5}$=$\frac{22}{5}$£¬
¡àC¡äµãµÄ×ø±êΪ£¨$\frac{11}{5}$£¬-$\frac{22}{5}$£©£¬
ÉèP£¨t£¬$\frac{5}{6}$t2-$\frac{7}{6}$t-4£©£¬
¡ßS¡÷AOB+SÌÝÐÎAOHP-S¡÷PBH=S¡÷PAB£¬
¡à$\frac{1}{2}$•3•4+$\frac{1}{2}$£¨3+t£©•£¨$\frac{5}{6}$t2-$\frac{7}{6}$t-4£©-$\frac{1}{2}$•t•£¨$\frac{5}{6}$t2-$\frac{7}{6}$t-4+4£©=$\frac{25}{2}$£¬
ÕûÀíµÃt2-3t-10=0£¬½âµÃt1=-2£¨ÉáÈ¥£©£¬t2=5£¬ÔòP£¨5£¬11£©£¬
ÉèÖ±ÏßPAµÄ½âÎöʽΪy=px+q£¬
°ÑP£¨5£¬11£©£¬A£¨3£¬0£©´úÈëµÃ$\left\{\begin{array}{l}{5p+q=11}\\{3p+q=0}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{p=\frac{11}{2}}\\{q=-\frac{33}{2}}\end{array}\right.$£¬
ËùÒÔÖ±ÏßPAµÄ½âÎöʽΪy=$\frac{11}{2}$x-$\frac{33}{2}$£¬
µ±x=$\frac{11}{5}$ʱ£¬y=$\frac{11}{2}$x-$\frac{33}{2}$=-$\frac{22}{5}$£¬
¡àC¡ä£¨$\frac{11}{5}$£¬-$\frac{22}{5}$£©ÔÚÖ±ÏßAPÉÏ£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌ⣺ÊìÁ·ÕÆÎÕ¶þ´Îº¯ÊýͼÏó¡¢Ò»´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷ºÍÁâÐεÄÐÔÖÊ£»»áÀûÓôý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýºÍÒ»´Îº¯Êý½âÎöʽ£»Àí½â×ø±êÓëͼÐÎÐÔÖÊ£¬¼ÇסÁ½µã¼äµÄ¾àÀ빫ʽ£»ÀûÓÃÏàËÆ¼ÆËãÏ߶εij¤ºÍÀûÓù´¹É¶¨ÀíµÄÄæ¶¨ÀíÅжÏÈý½ÇÐÎΪֱ½ÇÈý½ÇÐΣ®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÏÂÁÐ˵·¨ÖдíÎóµÄÊÇ£¨¡¡¡¡£©
A£®ÈÎÒâÈý½ÇÐεÄÄڽǺͶ¼ÊÇ180¡ã
B£®Èý½ÇÐΰ´±ß·Ö¿É·ÖΪ²»µÈ±ßÈý½ÇÐκ͵ÈÑüÈý½ÇÐÎ
C£®Èý½ÇÐεÄÖÐÏß¡¢½Çƽ·ÖÏß¡¢¸ß¶¼ÊÇÏß¶Î
D£®Èý½ÇÐεÄÒ»¸öÍâ½Ç´óÓÚÈκÎÒ»¸öÄÚ½Ç

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÓÃËĸöÏàͬµÄ³¤·½ÐÎÓëÒ»¸öСÕý·½ÐÎÎÞÖØµþ¡¢ÎÞ·ì϶µØÆ´³ÉÒ»¸ö´óÕý·½ÐεÄͼ°¸£¨Èçͼ£©£¬ÔòÓÉͼÐÎÄܵóö£¨a-b£©2=£¨a+b£©2-4ab£¨»¯Îªa¡¢bÁ½ÊýºÍÓë»ýµÄÐÎʽ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÈçͼÊÇͬһʱ¿ÌѧУÀïÒ»¿ÃÊ÷ºÍÆì¸ËµÄÓ°×Ó£¬Èç¹ûÊ÷¸ßΪ3Ã×£¬²âµÃËüµÄÓ°×Ó³¤Îª1.2Ã×£¬Æì¸ËµÄ¸ß¶ÈΪ5Ã×£¬ÔòËüµÄÓ°×Ó³¤Îª£¨¡¡¡¡£©
A£®4Ã×B£®2Ã×C£®1.8Ã×D£®3.6Ã×

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®²»µÈʽ×é$\left\{\begin{array}{l}x-1£¾0\\ x+2¡Ý2x-1\end{array}\right.$µÄ½â¼¯ÊÇ1£¼x¡Ü3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®¼ÆË㣺
£¨1£©3$\sqrt{5}$+2$\sqrt{5}$
£¨2£©$\sqrt{£¨\sqrt{2}-\sqrt{3}£©^{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®¼ÆË㣺
£¨1£©-2-3+8-1¡Á£¨-1£©3¡Á£¨-$\frac{1}{2}$£©-2¡Á70£®
£¨2£©x£¨x+1£©-£¨x-1£©£¨x+1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Èçͼ£¬ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬AB=8£¬BC=10cm£¬¡ÏB=150¡ã£¬Ôò?ABCDµÄÃæ»ý=40cm2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®¼ÆËã$\root{3}{-27}$µÄ½á¹ûΪ-3£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸