【题目】某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的90%,用3600元购买排球的个数要比用3600元购买篮球的个数多10个.
(1)问每一个篮球、排球的进价各是多少元?
(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?
【答案】(1)每一个篮球的进价是40元,每一个排球的进价是36元;(2)该文体商店应购进篮球25个、排球75个才能获得最大利润,最大利润是5550元.
【解析】
(1)设每一个篮球的进价是x元,则每一个排球的进价是0.9x元,根据用3600元购买排球的个数要比用3600元购买篮球的个数多10个列出方程,解之即可得出结论;
(2)设文体商店计划购进篮球m个,总利润y元,根据题意用m表示y,结合m的取值范围和m为整数,即可得出获得最大利润的方案.
解:(1)设每一个篮球的进价是x元,则每一个排球的进价是0.9x元,依题意有
,解得x=40,
经检验,x=40是原方程的解,
0.9x=0.9×40=36.
故每一个篮球的进价是40元,每一个排球的进价是36元;
(2)设文体商店计划购进篮球m个,总利润y元,则
y=(100﹣40)m+(90﹣36)(100﹣m)=6m+5400,
依题意有,
解得0<m≤25且m为整数,
∵m为整数,
∴y随m的增大而增大,
∴m=25时,y最大,这时y=6×25+5400=5550,
100-25=75(个).
故该文体商店应购进篮球25个、排球75个才能获得最大利润,最大利润是5550元.
科目:初中数学 来源: 题型:
【题目】如图,在足够大的空地上有一段长为的旧墙,某人利用旧墙和木栏围成一个矩形菜园,其中,已知矩形菜园的一边靠墙,另三边一共用了的木栏.
(1)若,所围成的矩形菜园的面积为,求所利用的旧墙的长;
(2)求矩形菜园面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,,点E为BC的中点,以CD为直径在正方形外部作半圆CFD,点F为半圆的中点,连接,图中阴影部分的面积是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在△ABC中,AC=BC=m,D是AB边上的一点,将∠B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.
(1)特例感知 如图1,若∠C=60°,D是AB的中点,求证:AP=AC;
(2)变式求异 如图2,若∠C=90°,m=6,AD=7,过点D作DH⊥AC于点H,求DH和AP的长;
(3)化归探究 如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B落在AC边上两个不同的位置,请直接写出a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4,点E在边AB上,BE=1,∠DAM=45°,点F在射线AM上,且AF=,过点F作AD的平行线交BA的延长线于点H,CF与AD相交于点G,连接EC、EG、EF.下列结论:①△ECF的面积为;②△AEG的周长为8;③EG2=DG2+BE2;其中正确的是( )
A.①②③B.①③C.①②D.②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解不等式组:请结合题意填空,完成本题的解答:
(1)解不等式①,得: ;
(2)解不等式②得: ;
(3)把不等式①和②的解集在数轴上表示出来;
(4)原不等式组的解集为: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,点D是边BC上一动点(不与B、C重合),,DE交AC于点E,且.下列结论:①∽;②当时,与全等;③为直角三角形时,BD等于8或.其中正确的有__________.(选填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店购进一批成本为每件40元的商品,经调查发现,该商品每天的销售量(件与销售单价(元之间满足一次函数关系,其图象如图所示.
(1)求该商品每天的销售量与销售单价之间的函数关系式;
(2)若商店要使销售该商品每天获得的利润等于1000元,每天的销售量应为多少件?
(3)若商店按单价不低于成本价,且不高于65元销售,则销售单价定为多少元时,才能使销售该商品每天获得的利润最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c经过A (0,3),B (4,3)两点,与x轴交于点E,F,以AB为边作矩形ABCD,其中CD边经过抛物线的项点M,点P是抛物线上一动点(点P不与点A,B重合),过点P作y轴的平行线1与直线AB交于点G,与直线BD交于点H,连接AF交直线BD于点N.
(1)求该抛物线的解析式以及顶点M的坐标;
(2)当线段PH=2GH时,求点P的坐标;
(3)在抛物线上是否存在点P,使得以点P,E,N,F为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com