精英家教网 > 初中数学 > 题目详情
如图,在Rt△ABC中,∠ABC=90°,∠A<∠C,BD是斜边AC的中线,将△ABD沿直线BD折叠,点A落在点E处,如果BE恰好与AC垂直,那么sinA=______.
∵在直角△ABC中,BD是斜边AC的中线,
∴CD=AD=DB,(直角三角形的斜边中线等于斜边一半),
∴∠A=∠ABD,
由折叠的性质可得:∠A=∠E,∠ABD=∠DBE,AD=DE,
∴DE=DB,∠A=∠ABD=∠DBE=∠E,
∵AC⊥BE,
∴∠BDC=∠EDC,∠AOB=∠AOE=90°,
∵∠C+∠A=90°,∠C+∠OBC=90°,
∴∠A=∠OBC,
∴∠A=∠ABD=∠DBE=∠OBC,
∴∠A=
1
3
∠ABC=30°,
∴sinA=
1
2

故答案为:
1
2

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图所示,矩形AOBC在直角坐标系中,O为原点,A在x轴上,B在y轴上,直线AB的函数关系式为y=-
4
3
x+8
,M是OB上的一点,若将梯形AMBC沿AM折叠,点B恰好落在x轴上的点B′处,C的对应点为C′.
(1)求出B′点和M点的坐标;
(2)求直线AC′的函数关系式;
(3)设一动点P从A点出发,以每秒1个单位速度沿射线AB方向运动,过P作PQ⊥AB,交射线AM于Q;
①求运动t秒时,Q点的坐标;(用含t的代数式表示)
②以Q为圆心,以PQ的长为半径作圆,当t为何值时,⊙Q与y轴相切?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)如图1,等边△ABC中,AB=2,点E是AB的中点,AD是高,P为AD上一点,则BP+PE的最小值等于______.
(2)如图2,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则AF:CF=(  )
A.2:1B.3:2C.5:3D.7:5

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙P的圆心为P(-3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N在点M的上方.
(1)在图中作出⊙P关于y轴对称的⊙P′.根据作图直接写出⊙P′与直线MN的位置关系.
(2)若点N在(1)中的⊙P′上,求PN的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点P是边长为1的菱形ABCD对角线AC上一个动点,点M,N分别为AB,BC边上的中点,则MP+NP的最小值是(  )
A.2B.1C.
2
D.
1
2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC边中点E处,点A落在点F处,折痕为MN,则线段CN的长度为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在直角坐标系中,长方形ABCD的边AB可表示为(0,y)(-1≤y≤2),边BC可表示为(x,2)(0≤x≤4).
(1)在直角坐标系中画出长方形的位置,并写出A,B,C,D的坐标.
(2)将长方形ABCD作关于y轴的轴对称图形A′B′C′D′,求C′,D′的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,把平行四边形ABCD翻折,使B点与D点重合,EF为折痕,连接BE,DF.请你猜一猜四边形BFDE是什么特殊四边形?并证明你的猜想.

查看答案和解析>>

同步练习册答案