【题目】我市某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家惠农政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
【答案】(1)、y=-+24x+3200;(2)、200元;(3)、150元时,最大利润为5000元.
【解析】
试题分析:(1)、根据总利润=单件利润×数量得出函数关系式;(2)、根据题意得出方程,然后进行求解;(3)、将二次函数配方成顶点式,然后进行计算.
试题解析:(1)、根据题意,得y=(2400-2000-x)(8+4×), 即y=-+24x+3200.
(2)、由题意,得-+24x+3200=4800.整理,得-300x+20000=0.解这个方程,得=100,=200.
要使百姓得到实惠,取x=200.所以,每台冰箱应降价200元.
(3)、对于y=-+24x+3200=-+5000,
∴每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG于E,BF∥DE,交AG于F.
(1)求证:AF﹣BF=EF;
(2)将△ABF绕点A逆时针旋转,使得AB与AD重合,记此时点F的对应点为点F′,若正方形边长为3,求点F′与旋转前的图中点E之间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为8cm,E、F、G、H分别是AB、BC、CD、DA 上的动点,且AE=BF=CG=DH.
(1)求证:四边形EFGH是正方形;
(2)判断直线EG是否经过一个定点,并说明理由;
(3)求四边形EFGH面积的最小值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为( )
A.3.5×107
B.3.5×108
C.3.5×109
D.3.5×1010
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com