精英家教网 > 初中数学 > 题目详情

【题目】如图,李强在教学楼的点P处观察对面的办公大楼,为了求得对面办公大楼的高度,李强测得办公大楼顶部点A的仰角为30°,测得办公大楼底部点B的俯角为37°,已知测量点P到对面办公大楼上部AD的距离PM30m,办公大楼平台CD=10m.求办公大楼的高度(结果保留整数).(参考数据:sin37°≈,tan37°≈≈1.73)

【答案】32米

【解析】

CPM作垂线CN垂足为N.在△PMA可求AMPN.在△PBN利用正切可求BN利用总高度h=AM+BN即可得到结论

CPM作垂线CN垂足为NPMA中,∵APM=30°,∴PM=AM=30解得AM==17.3PN=PMNM=PMCD=3010=20PBN中,∵tan37°=,∴BM==15所以总高度h=AM+BN=32.332

办公大楼的高度约为32

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,已知:点A(0,0),B(,0),C(0,1)△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1△AA1B1,第2△B1A2B2,第3△B2A3B3,…,则第个等边三角形的边长等于__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC是边长为2的等边三角形,点P为直线BC上的动点,把线段APA点逆时针旋转60°至AEOAB边上一动点,则OE的最小值为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,点O是边AC上一个动点,过O作直线MNBC.设MN交ACB的平分线于点E,交ACB的外角平分线于点F.

(1)求证:OE=OF;

(2)若CE=12,CF=5,求OC的长;

(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在三角形纸片中,.将该纸片沿过点的直线折叠,使点落在斜边上的一点处,折痕记为(如图1),剪去后得到双层(如图2),再沿着边某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形.则所得平行四边形的周长为__________cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点A的坐标为(0,3),点B和点D的坐标分别为(m,0),(n,4),且m0,四边形ABCD是矩形.

(1)如图1,当四边形ABCD为正方形时,求m,n的值;

(2)在图2中,画出矩形ABCD,简要说明点C,D的位置是如何确定的,并直接用含m的代数式表示点C的坐标;

(3)探究:当m为何值时,矩形ABCD的对角线AC的长度最短.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知抛物线y=x2+bx+cABC三点,点A的坐标是30,点C的坐标是0-3,动点P在抛物线上.

1b =_________c =_________,点B的坐标为_____________;(直接填写结果)

(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;

(3)过动点PPE垂直y轴于点E,交直线AC于点D,过点Dx轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知在△ABC中,AB=AC,BD和CE分别是∠ABC和∠ACB的角平分线,且BD和CE相交于O点.

(1)试说明△OBC是等腰三角形;

(2)连接OA,试判断直线OA与线段BC的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把长方形纸片纸沿对角线折叠,设重叠部分为,那么,下列说法错误的是(

A.是等腰三角形,

B.折叠后ABECBD一定相等

C.折叠后得到的图形是轴对称图形

D.EBAEDC一定是全等三角形

查看答案和解析>>

同步练习册答案