精英家教网 > 初中数学 > 题目详情

平面内有四个点A、B、C、D,其中∠ABC=1500,∠ADC=300,AB=BC=1,则满足题意的BD长的最大值是         


【考点】圆周角定理,圆内接四边形的性质,等腰三角形的性质,勾股定理,二次根式化简。

【分析】如图,考虑到∠ABC=1500,∠ADC=300,根据圆内接四边形对角互补的性质,知点A、B、C、D在同一圆上,且点D在优弧AC上,所以BD长的最大值是BO的延长线与⊙O的交点(点O是AB和BC中垂线的交点)。

连接OC,过点C作CH⊥BD于点H

设OC=x,

在Rt△CHD中,由勾股定理,得

∴BD长的最大值是


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图,反比例函数的图象与正比例函数的图象交于点(2,1),则使y1>y2的x的取值范围是【    】

A.0<x<2   B.x>2     C.x>2或-2<x<0    D.x<-2或0<x<2

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,已知△ABC中,AB=,AC=,BC=6,点M在AB边上,且AM=BM,在线段AC上取点N,使△AMN与△ABC相似,求线段MN的长。

查看答案和解析>>

科目:初中数学 来源: 题型:


类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整,原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.若=3,求的值.

(1)尝试探究

在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是________,

CG和EH的数量关系是________,

的值是________.

(2)类比延伸:

如图2,在原题条件下,若=m(m>0)则的值是________(用含有m的代数式表示),试写出解答过程.

(3)拓展迁移:

如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F,若=a,=b(a>0,b>0)则的值是________(用含a、b的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,正方形ABCD中,扇形BAC与扇形CBD的弧交于点E, AB=2cm.则图中阴影部分面积为        cm2

查看答案和解析>>

科目:初中数学 来源: 题型:


 如图,在Rt△ABC中,∠C=900,∠B=300,BC=,点D是BC边上一动点(不与点B、C重合),过点D作DE⊥BC交AB边于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处,当△AEF为等腰三角形时,BD的长为        

查看答案和解析>>

科目:初中数学 来源: 题型:


已知抛物线的顶点在坐标轴上.

(1)求的值;

(2)时,抛物线向下平移个单位后与抛物线关于轴对称,且过点,求的函数关系式;

(3)时,抛物线的顶点为,且过点.问在直线 上是否存在一点使得△的周长最小,如果存在,求出点的坐标, 如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


 如图,在Rt△ABC中,∠C=90°,∠A=45°,AB=2.将△ABC绕顶点A顺时针方向旋转至△AB′C′的位置,B,A,C′三点共线,则线段BC扫过的区域面积为      

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).

(1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).

(2)当点N落在AB边上时,求t的值.

(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm²),求S与t的函数关系式.

(4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围.

查看答案和解析>>

同步练习册答案