平面内有四个点A、B、C、D,其中∠ABC=1500,∠ADC=300,AB=BC=1,则满足题意的BD长![]()
的最大值是 。
科目:初中数学 来源: 题型:
如图,反比例函数![]()
的图象与正比例函数![]()
的图象交于点(2,1),则使y1>y2的x的取值范围是【 】
![]()
![]()
A.0<x<2 B.x>2 C.x>2或-2<x<0 D.x<-2或0<x<2
查看答案和解析>>
科目:初中数学 来源: 题型:
类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整,原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.若![]()
=3,求![]()
的值.
![]()
![]()
(1)尝试探究
:
在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是________,
CG和EH的数量关系是________,
![]()
的值是________.
(2)类比延伸:
如图2,在原题条件下,若![]()
=m(m>0)则![]()
![]()
的值是________(用含有m的代数式表示),试写出解答过程.
(3)拓展迁移:
如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F,若![]()
=a,![]()
=b(a>0,b>0)则![]()
的值是________(用含a、b的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,
在Rt△ABC中,∠C=900,∠B=300,BC=
,点D是BC边上一动点(不与点B、C重合),过点D作DE⊥BC交AB边于点E,将∠B沿直
线DE翻折,点B落在射线BC上的点F处,当△AEF为等腰三角形时,BD的长为 。
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
已知抛物线![]()
:![]()
的顶点在坐标轴上.
(1)求![]()
的值;
(2)![]()
时,抛物线![]()
向下平移![]()
个单位后与抛物线![]()
:![]()
关于![]()
轴对称,且![]()
过点![]()
,求![]()
的函数关系式;
(3)![]()
时,抛物线![]()
的顶点为![]()
,且过点![]()
.问在直线![]()
上是否存在一点![]()
使得△![]()
的周长最小,如果存在,求出点![]()
的坐标, 如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在Rt△ABC中,∠C=90°,∠A=45°,AB=2.将△ABC绕顶点A顺时针方向旋转至△
AB′C′的位置,B,A,C′三点共线,则线段BC扫过的区域面积为 .
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在Rt△ABC中,∠ACB=90°,AC=
8cm,BC=4cm,D、E分别为边AB、BC的中点
,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以![]()
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的
长为______cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为
五边形时,设五边形的面积为S(cm²),求S与t的函数关系式.
(4)连结CD.当点N于点D重合时,有一点H从点M出
发,在线段MN上以2.5cm/s的速
度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com