【题目】如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.
(1)说明BE=CF的理由;
(2)如果AB=5,AC=3,求AE、BE的长.
【答案】(1)见解析;(2)AE=4,BE=1.
【解析】
(1)连接DB,DC,证明Rt△BED≌Rt△CFD,再运用全等三角形的性质即可证明;
(2).先证明△AED≌△AFD得到AE=AF,设BE=x,则CF=x, 利用线段的和差即可完成解答.
(1)证明:连接BD,CD,
∵ AD平分∠BAC,DE⊥AB,DF⊥AC,
∴DE=DF,∠BED=∠CFD=90°,
∵DG⊥BC且平分BC,
∴BD=CD,
在Rt△BED与Rt△CFD中,
,
∴Rt△BED≌Rt△CFD(HL),
∴BE=CF;
(2)解:在△AED和△AFD中,
∴△AED≌△AFD(AAS),
∴AE=AF,
设BE=x,则CF=x,
∵AB=5,AC=3,AE=AB﹣BE,AF=AC+CF,
∴5﹣x=3+x,解得:x=1,
∴BE=1,即AE=AB﹣BE=5﹣1=4.
科目:初中数学 来源: 题型:
【题目】一列快车从甲城驶往乙城,一列慢车从乙城驶往甲城,已知每隔1小时有一列速度相同的快车从甲城开往乙城,如图所示,OA是第一列快车离开甲城的路程y(单位在:千米)与运行时间x(单位:小时)的函数图象,BC是一列从乙城开往甲城的慢车距甲城的路程y(单位:千米)与运行时间x(单位:小时)的函数图象.根据图象判断以下说法正确的个数有( )
①甲乙两地之间的距离为300千米;
②点B的横坐标0.5的意义是慢车发车时间比第一列快车发车时间晚半小时;
③若慢车的速度为100千米/小时,则点C的坐标是(3.5,0);
④若慢车的速度为100千米/小时,则第二列快车出发后1小时与慢车相遇.
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某游泳馆推出了两种收费方式.
方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.
方式二:顾客不购买会员卡,每次游泳付费40元.
设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).
(1)请分别写出y1,y2与x之间的函数表达式.
(2)若小亮一年内来此游泳馆的次数为15次,选择哪种方式比较划算?
(3)若小亮计划拿出1400元用于在此游泳馆游泳,采用哪种付费方式更划算?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某品牌T恤专营批发店的T恤衫在进价基础上加价m%销售,每月销售额9万元,该店每月固定支出1.7万元,进货时还需付进价5%的其它费用.
(1)为保证每月有1万元的利润,m的最小值是多少?(月利润=总销售额-总进价-固定支
出-其它费用)
(2)经市场调研发现,售价每降低1%,销售量将提高6%,该店决定自下月起降价以促进销售,已知每件T恤原销售价为60元,问:在m取(1)中的最小值且所进T恤当月能够全部销售完的情况下,销售价调整为多少时能获得最大利润,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB,CF⊥AD.试说明:
(1)△CBE≌△CDF;
(2)AB+DF=AF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的两个外角平分线交于点P,则下列结论正确的是( )
①PA=PC ②BP平分∠ABC ③P到AB,BC的距离相等 ④BP平分∠APC.
A. ①② B. ①④ C. ②③ D. ③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(-1,5),B(-4,3),C(-1,0)
(1)在图中画出△ABC关于轴的对称图形△A1B1C1.
(2)写出点A1,B1,C1的坐标.
(3)计算四边形BCC1B1的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于的二次函数
(1)当时,求该函数图像的顶点坐标.
(2)在(1)条件下,为该函数图像上的一点,若关于原点的对称点也落在该函数图像上,求的值
(3)当函数的图像经过点(1,0)时,若是该函数图像上的两点,试比较与的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:
①该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:
时间(第x天) | 1 | 2 | 3 | 10 | … |
日销售量(n件) | 198 | 196 | 194 | ? | … |
②该产品90天内每天的销售价格与时间(第x天)的关系如下表:
时间(第x天) | 1≤x<50 | 50≤x≤90 |
销售价格(元/件) | x+60 | 100 |
(1)求出第10天日销售量;
(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量×(每件销售价格-每件成本))
(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com