【题目】如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.
求证:(1)EC=BF;(2)EC⊥BF.
【答案】见解析
【解析】
试题分析:(1)先求出∠EAC=∠BAF,然后利用“边角边”证明△ABF和△AEC全等,根据全等三角形对应边相等即可证明;
(2)根据全等三角形对应角相等可得∠AEC=∠ABF,设AB、CE相交于点D,根据∠AEC+∠ADE=90°可得∠ABF+∠ADM=90°,再根据三角形内角和定理推出∠BMD=90°,从而得证.
证明:(1)∵AE⊥AB,AF⊥AC,
∴∠BAE=∠CAF=90°,
∴∠BAE+∠BAC=∠CAF+∠BAC,
即∠EAC=∠BAF,
在△ABF和△AEC中,
∵,
∴△ABF≌△AEC(SAS),
∴EC=BF;
(2)如图,根据(1),△ABF≌△AEC,
∴∠AEC=∠ABF,
∵AE⊥AB,
∴∠BAE=90°,
∴∠AEC+∠ADE=90°,
∵∠ADE=∠BDM(对顶角相等),
∴∠ABF+∠BDM=90°,
在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°,
所以EC⊥BF.
科目:初中数学 来源: 题型:
【题目】如图,CD⊥AB,EF⊥AB,垂足分别为D、F,∠1=∠2,
(1)试判断DG与BC的位置关系,并说明理由.
(2)若∠A=70°,∠BCG=40°,求∠AGD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )
A.1处 B.2处 C.3处 D.4处
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABC中,∠A=∠B=30°,过点C作CD⊥AC,交AB于点D.
(1)作△ACD外接圆⊙O(尺规作图,保留作图痕迹,不写作法);
(2)判断直线BC与⊙O的位置关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角形坐标系中有两点A(6,0)、B(0,8),点C为AB的中点,点D在x轴上,当点D的坐标为 时,由点A、C、D组成的三角形与△AOB相似.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2016年9月19日,重庆市第五届运动会开幕式将在溶陵区拉开大幕,组委会面向社会公开征集了主题门号、会徽、会歌,吉祥物等元素,共收到有效作品1600余件,数据1600用科学记数法表示为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,折叠边长为a的正方形ABCD,使点C落在边AB上的点M处(不与点A,B重合),点D落在点N处,折痕EF分别与边BC、AD交于点E、F,MN与边AD交于点G.证明:
(1)△AGM∽△BME;
(2)若M为AB中点,则==;
(3)△AGM的周长为2a.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com