精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,MBC上的点,过点DDEAMEDE=DC=5AE=2EM

1)求证:BM=AE

2)求BM的长.

【答案】1)证明见解析;(2

【解析】

(1)由矩形的性质推出∠DAE=AMB,AB=DE,ABC=AED=90°,求出ADE≌△MAB,即可得BM=AE;

(2)根据勾股定理,将值代入求出EM即可求出BM

1四边形ABCD是矩形,

ADBC,AB=CD,∠B=∠C=90°,

∴∠DAE=∠AMB

CD=DE,CD=AB,

AB=DE,ABC=∠AED=90°,∠DAE=∠AMB,

∴△ADE≌△MAB,

BM=AE

2)在Rt△ABM,AM2=AB2+BM2,

∴9EM2=25+4EM2,

EM=,

AE=BM=2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】现场学习题:

问题背景:

ABC中,ABBCAC三边的长分别为,求这个三角形的面积.

小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC(即ABC三个顶点都在小正方形的顶点处),如图1所示,这样不需求ABC的高,而借用网格就能计算出它的面积.

1)请你将ABC的面积直接填写在横线上.

思维拓展:

2)我们把上述求ABC面积的方法叫做构图法,若ABC三边的长分别为a2aaa0),请利用图2的正方形网格(每个小正方形的边长为a)画出相应的ABC,并求出它的面积是:

探索创新:

3)若ABC三边的长分别为m0n0m≠n),请运用构图法在图3指定区域内画出示意图,并求出ABC的面积为:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个盒子里有完全相同的三个小球,球上分别标上数字-1、1、2.随机摸出一个小球(不放回),其数字记为p,再随机摸出另一个小球,其数字记为q,则p,q使关于x的方程x2+px+q=0有实数根的概率是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2016年盈利1500万元,到2018年盈利2160万元,且从2016年到2018年,每年盈利的年增长率相同.

1)求每年盈利的年增长率;

2)若该公司盈利的年增长率继续保持不变,那么2019年该公司盈利能否达到2500万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践:

问题发现:学完四边形的有关知识后,创新小组的同学进一步研究特殊的四边形,发现了一个结论.如图1,已知四边形是正方形,根据勾股定理和正方形的性质,很容易能够证明

问题探究:

1)如图2,已知四边形是矩形,若,则的值是 的值是

2)如图3,已知四边形是菱形,证明:

拓广探索:

3)智慧小组看了创新小组交流后,提出了一个猜想,如图4,在中,,你认为这个猜想正确吗?请说明理由;

4)请用文字语言叙述中得出的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【问题情境】

如图1,四边形ABCD是正方形,MBC边上的一点,ECD边的中点,AE平分∠DAM

【探究展示】

1)证明:AM=AD+MC

2AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.

【拓展延伸】

3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=-x2+x+c的顶点是正方形ABCO的边AB的中点,点A,C在坐标轴上,抛物线分别与AO,BC交于D,E两点,将抛物线向下平移1个单位长度得到如图所示的阴影部分.现随机向该正方形区域投掷一枚小针,则针尖落在阴影部分的概率P=_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在中,,线段的垂直平分线交于点,交于点,则以下结论:①是等腰三角形;②的角平分线;③的周长;④正确的有(

A.①②B.①③C.③④D.②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在正方形ABCD中,点EF分别在ABBC上,且AEBF.

1试探索线段AFDE的数量关系,写出你的结论并说明理由;

2连接EFDF,分别取AEEFFDDA的中点HIJK,则四边形HIJK是什么特殊四边形?请在图2中补全图形,并说明理由.

查看答案和解析>>

同步练习册答案